Objective: Several guidelines highlight the beneficial impact of exercise on the management of symptoms and health-related quality of life (HRQOL) in patients with fibromyalgia syndrome (FMS). However, few analyses have compared different types of exercise. We, therefore, intent to compare the effects of different exercise types on improving the overall HRQOL and typical symptoms in patients with FMS.
View Article and Find Full Text PDFExploring new noncovalent bonding motifs with reversibly tunable binding affinity is of fundamental importance in manipulating the properties and functions of supramolecular self-assembly systems and materials. Herein, for the first time, we demonstrate a unique visible-light-switchable telluro-triazole/triazolium-based chalcogen bonding (ChB) system in which the Te moieties are connected by azobenzene cores. The binding strengths between these azo-derived ChB receptors and the halide anions (Cl , Br ) could be reversibly regulated upon irradiation by visible light of different wavelengths.
View Article and Find Full Text PDFBackground And Aims: Difficult endotracheal intubation is one of the most challenging operations in anesthesia. How to better predict difficult airway and make corresponding preparations to reduce the occurrence of accidents is a difficult task faced by anesthesiologists every day. This study decide to evaluate the value of the Upper Lip Bite Test (ULBT) and the Modified Mallampati Test (MMT) in predicting difficult intubation under direct laryngoscopy and find out the most intuitive and simple method to predict difficult intubation under direct laryngoscopy in apparently normal patients.
View Article and Find Full Text PDFBackground: Myoclonic movement is a very common but undesirable phenomenon during the induction of general anesthesia using etomidate. Such movement may cause unnecessary problems. Currently, there is an increasing number of drugs for preventing etomidate-induced myoclonus (EM).
View Article and Find Full Text PDFA photo-switchable hetero-complementary quadruple H-bonding array, which consists of an azobenzene-derived ureidopyrimidinone (UPy) module (Azo-UPy) and a nonphotoactive diamidonaphthyridine (DAN) derivative (Napy-1), is constructed based on a reversible photo-locking approach. Upon UV (390 nm)/Vis (460 nm) light irradiations, photo-switchable quadruple H-bonded dimerization between Azo-UPy and Napy-1 can be achieved with exhibiting 4.8×10 -fold differences in binding strength (ON/OFF ratios).
View Article and Find Full Text PDFDeveloping new photoswitchable noncovalent interaction motifs with controllable bonding affinity is crucial for the construction of photoresponsive supramolecular systems and materials. Here we describe a unique "photolocking" strategy for realizing photoswitchable control of quadruple hydrogen-bonding interactions on the basis of modifying the ureidopyrimidinone (UPy) module with an -ester substituted azobenzene unit as the "photo-lock". Upon light irradiation, the obtained motif is capable of unlocking/locking the partial H-bonding sites of the UPy unit, leading to photoswitching between homo- and heteroquadruple hydrogen-bonded dimers, which has been further applied for the fabrication of novel tunable hydrogen bonded supramolecular systems.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2019
Exploring dynamic bonds and their applications in fabricating dynamic materials has received great attention. A photoinduced [2]rotaxane-based dynamic mechanical bond (DMB) features visible-light-triggered dynamic bonding behavior that is essentially distinguished from conventional dynamic chemical bonds. In this DMB, a photoisomerizable ortho-fluoroazobenzene unit is introduced as a steric-controllable stopper, the visible-light-induced dynamic wagging movement of which enables the photoregulated threading of the macrocycle.
View Article and Find Full Text PDFPhotochromic [2]rotaxanes with bidirectional photoswitchability were fabricated, whose colored states exhibit remarkable visible-light and thermal stabilities as revealed by systematically spectroscopic investigations.
View Article and Find Full Text PDFThe development of artificial self-assembling systems with dynamic photo-regulation features in aqueous solutions has drawn great attention owing to the potential applications in fabricating elaborate biological materials. Here we demonstrate the fabrication of water-soluble cucurbit[8]uril (CB[8])-mediated supramolecular polymers by connecting the fluorinated azobenzene (FAB) containing monomers through host-enhanced heteroternary π-π stacking interactions. Benefiting from the unique visible-light-induced E→Z photoisomerization of the FAB photochromophores, the encapsulation behaviors between the CB[8] macrocycle and the monomers could be regulated upon visible light irradiation, resulting in the depolymerization of such CB[8]-mediated supramolecular polymers.
View Article and Find Full Text PDFLight-triggered photoisomerization of the azobenzene (AB) unit in bistable [2]rotaxanes can cause the shuttling of the macrocycle on the dumbbell, resulting in distinctive dual spectral variation characteristics: (1) the spectral change of the photochromic unit and (2) the variation of the charge-transfer band. By employing the CT bond region as an output signal, non-destructive readout of optical information could be achieved.
View Article and Find Full Text PDFOrthogonal dynamic covalent bonds are of interest for the construction of functional systems. The orthogonality of disulfide and hydrazone exchange under basic and acidic conditions, respectively, is well established. However, the integration of boronate esters as the third bond has failed so far because they exchanged too easily, especially under hydrazone exchange conditions.
View Article and Find Full Text PDFCyclization reactions are common processes in organic chemistry and show familiar patterns of reaction rates vs ring size. While the details vary with the nature of bond being made and the number of unsaturated atoms, small rings typically form quickly despite angle strain, medium size rings form very slowly due to internal strains, and large rings form slowly (when they form at all) because fewer and less probable conformations bring the ends of the substrate together. High dilution is commonly used to slow the competing bi- and higher molecular processes.
View Article and Find Full Text PDFEncapsulation of amphiphilic guests in a water-soluble cavitand is enhanced by the addition of hexafluoroisopropanol (HFIP). While binding of n-alkanes in cavitands in HFIP/D2O mixtures was similar to that observed in 100% D2O, the binding of guests with terminal polar groups was quite different. Several α,ω-bolaamphiphiles: alkyldiols (C10-C12), a dinitrile (C14) and a diacid (C16) became encapsulated in HFIP/D2O solutions.
View Article and Find Full Text PDFAlthough they combine the best of covalent and non-covalent bonds, dynamic covalent bonds are usually not used together. Building on pioneering examples for functional systems with two orthogonal dynamic covalent bonds, we herein elaborate on multicomponent surface architectures that operate with three different types of dynamic covalent bonds. Disulfide exchange under basic conditions is used to grow single π stacks directly on oxide surfaces, hydrazone exchange under acidic conditions to add a second string or stack, and boronic-ester exchange under neutral conditions to build the third one.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
July 2015
Multicomponent surface architectures are introduced that operate with three different dynamic covalent bonds. Disulfide exchange under basic conditions accounts for the growth of π stacks on solid surfaces. Hydrazone exchange under acidic conditions is used to add a second coaxial string or stack, and boronic ester exchange under neutral conditions is used to co-align a third one.
View Article and Find Full Text PDFA deep cavitand with ionic "feet" dimerizes around hydrophobic compounds in D2O. Longer n-alkane guests, C14-C18, are encapsulated in contorted conformations and NMR is used to deduce their shapes. Competition experiments establish the driving forces involved and how they compensate for the steric clashes in the folded structures of the encapsulated alkanes.
View Article and Find Full Text PDFTwo new types of supramolecular polymers have been constructed via the self-assembly of rigid rod-like monomers and cucurbit[8]uril (CB[8]) in water. These supramolecular polymers possessed rigid backbones and further aggregated into stick-like bunched fibres.
View Article and Find Full Text PDFThe construction of supramolecular systems in aqueous media is still a great challenge owing to the limited sources of building blocks. In this study, a series of 4-aryl-N-methylpyridinium derivatives have been synthesized. They formed very stable host-guest (1:2) complexes with CB[8] in water (binding constants up to 10(14) M(-2)) with the two guest molecules arranged in a head-to-tail manner and the complexes showed high thermostability, which was revealed by (1) H NMR and UV/Vis spectroscopic studies, ITC, and crystallographic analysis.
View Article and Find Full Text PDFA cavitand with ionic, but nonionizable "feet" folds around hydrophobic guests in D2O. Short alkanes and ibuprofen are included and exchange rates are slow on the NMR timescale. Normal octanoyl groups show good affinity for the cavitand and the gastric peptide ghrelin is bound at low pH and physiological temperature.
View Article and Find Full Text PDFWe report here a widened, deep cavitand host that binds hydrophobic and amphiphilic guests in D2O. Small alkanes (C6 to C11) are bound in compressed conformations and tumble rapidly within the space. Longer n-alkanes (C13 to C14), n-alcohols, and α,ω-diols are taken up in folded conformations.
View Article and Find Full Text PDFThe self-assembly of a new type of three-dimensional (3D) supramolecular polymers from tetrahedral monomers in both organic and aqueous media is described. We have designed and synthesized two tetraphenylmethane derivatives T1 and T2, both of which bear four tetrathiafulvalene (TTF) units. When the TTF units were oxidized to the radical cation TTF(.
View Article and Find Full Text PDFHydrogen-bonded capsules constrain molecules into small spaces, where they exhibit behavior that is inaccessible in bulk solution. Water competes with the formation of hydrogen bonds, and other forces for assembly, such as metal/ligand interactions or hydrophobic effects, have been applied. Here we report the reversible assembly of a water-soluble cavitand to a robust capsule host in the presence of suitable hydrophobic guests.
View Article and Find Full Text PDFThe self-assembly of well-defined 2D supramolecular polymers in solution has been a challenge in supramolecular chemistry. We have designed and synthesized a rigid stacking-forbidden 1,3,5-triphenylbenzene compound that bears three 4,4'-bipyridin-1-ium (BP) units on the peripheral benzene rings. Three hydrophilic bis(2-hydroxyethyl)carbamoyl groups are introduced to the central benzene ring to suppress 1D stacking of the triangular backbone and to ensure solubility in water.
View Article and Find Full Text PDFReverse vesicles exhibiting functions similar to those of normal vesicles have been constructed through the self-assembly of TTF/CBPQT(4+)-based pseudo[2]rotaxanes in a nonpolar solvent. The ends of the threads of the pseudo[2]rotaxanes are attached with a Fréchet-type G-3 dendron and a hydrogen-bonded arylamide foldamer. These vesicles exhibit a response to redox.
View Article and Find Full Text PDF