Publications by authors named "Kang-Pil Kim"

All-inorganic metal halide perovskite nanocrystals (IPeNCs) have become one of the most promising luminescent materials for next-generation display and lighting technology owing to their excellent color expression ability. However, research on IPeNCs with stable blue emission is limited. In this paper, we report stable blue emissive all-bromide IPeNCs obtained through a modified ligand-assisted reprecipitation method using an ultraviolet (UV)-curable prepolymer as the anti-solvent at a low temperature.

View Article and Find Full Text PDF

CsPbIBr, a cesium-based all-inorganic halide perovskite (CsPe), is a very promising alternative material to mainstream organic-inorganic hybrid halide perovskite (HPe) materials owing to its exceptional moisture stability, thermal stability, and light stability. However, because of the wide band gap (2.05 eV) of CsPbIBr, it has a low power conversion efficiency (), which hinders its application in highly efficient solar cells.

View Article and Find Full Text PDF

We report a highly effective surface treatment method for planar-type SbS solar cells by employing a CsCO-modified compact TiO (c-TiO) electron transport layer. It is found that surface treatment using a CsCO solution can shift the work function of c-TiO upward and reduce its surface roughness. As a result, compared with the power conversion efficiency of untreated solar cells, that of the treated solar cells with a glass/FTO/c-TiO(/CsCO)/SbS/P3HT/Au structure significantly improved from 2.

View Article and Find Full Text PDF

The Ag nanowire (NW) + Au nanoparticle (NP)-embedded TiO2 photoelectrodes were adopted for conventional planar TiO2-based Sb2S3 hybrid solar cells to improve the cell efficiency. Compared to conventional planar TiO2-based Sb2S3 hybrid solar cells, the Ag NW + Au NP/TiO2-based Sb2S3 hybrid solar cells exhibited an improvement of approximately 40% in the cell efficiency due to the significant increase in both Jsc and Voc. These enhanced Jsc and Voc were attributed to the increased surface area, charge-collection efficiency, and light absorption by embedding the Ag NWs + Au NPs composite.

View Article and Find Full Text PDF

In this paper, we have studied the effect of the thickness of a CH3NH3PbI3 perovskite overlayer on mesoporous TiO2 electrodes in perovskite solar cells. The overlayers were prepared by spin coating PbI2 films on the electrodes, which were subsequently exposed to a CH3NH3I/2-propanol solution. We controlled the thickness of the perovskite overlayer by changing the PbI2 solution concentration.

View Article and Find Full Text PDF

We have studied the effect of TiCl4 post-treatment on the embedded-type TiO2 nanotubes (NT)-dye-sensitized solar cells (DSSCs). The TiO2 nanoparticles layer formed on TiO2 NTs surface by TiCl4 post-treatment showed different morphologies depending on TiCl4 treatment temperature. These different morphologies influenced the cell efficiency of TiO2 NT-DSSCs.

View Article and Find Full Text PDF

A nanoparticle-based DSSC shows limited efficiency levels due to its disordered geometrical structure and interfacial interference during electron transport, whereas the use of nanofibers in a DSSC can increase the electron mobility at the interfacial area of the materials due to the reduced recombination of electrons before reaching the collecting electrode. In this study, we describe the fabrication and characteristics of a ZnO nanofiber electrode for DSSC. From the results of a thermogravimetric analysis, a stepped heat treatment was developed for the calcinations of the ZnO electrodes.

View Article and Find Full Text PDF

We have embedded a TiO2 nanoparticle (NP) photoelectrode in a Ti substrate to improve the cell efficiency of conventional TiO2 NP based dye-sensitized solar cells (DSSCs) using Ti substrate. Compared to the conventional standing-type (TiO2 NPs on Ti substrate) DSSCs, the embedded-type (TiO2 NPs embedded in Ti substrate) DSSCs have shown an approximately 35% improvement in power conversion efficiency due to the improvement of J(sc). The embedded-type DSSCs have more charge transport paths than do standing-type DSSCs due to the increase of contact area between the TiO2 NP sidewall and the Ti substrate.

View Article and Find Full Text PDF

In this paper, we have proposed a new flexible dye-sensitized solar cell (DSSC) structure that employs an Anodic Aluminum Oxide (AAO) template imprinted TiO2 blocking layer, in which the AAO template creates TiO2 nano-particle aggregated islands on the TiO2 blocking layer. The TiO2 blocking layer prevents charge recombination between the metal foil and the liquid electrolyte. TiO2 nano-particle aggregated islands improve the scattering of incident light during back illumination and provide the wider surface area, yielding enhanced power conversion efficiency (PCE).

View Article and Find Full Text PDF

The recent discovery of novel high-affinity and selective dopamine D3 receptor (DA D3R) antagonists and partial agonists has provided tools with which to further elucidate the role DA D3R plays in substance abuse. The present study was conducted to evaluate the transport, metabolism, pharmacokinetics, and brain uptake of the DA D3R-selective fluorenyl amides, NGB 2904 [N-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)butyl)-9H-fluorene-2-carboxamide] fumarate) and JJC 4-077 [N-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)-3-hydroxybutyl)-9H-fluorene-2-carboxamide hydrochloride], and the 2-pyridylphenyl amides, CJB 090 [N-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)butyl)-4-(pyridine-2-yl)benzamide hydrochloride] and PG 01037 [N-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)-trans-but-2-enyl)-4-(pyridine-2-yl)benzamide hydrochloride], all of which have been studied in animal models of psychostimulant abuse. Additional screening with a panel of human and rat Supersomes was performed for NGB 2904 and PG 01037.

View Article and Find Full Text PDF

The purpose of this study was to examine the feasibility of applying a sample pooling method to the accelerated estimation of the uptake clearance of drugs to the brain in rats. Brain uptake clearances (CL(uptake)) were estimated for five model compounds using the sample pooling method and an integration plot analysis. CL(uptake) was also evaluated for caffeine and theophylline by brain microdialysis.

View Article and Find Full Text PDF

The objective of this study was to characterize the extent of the formation of the active (trans-alcohol form) and inactive (cis-alcohol) metabolites of loxoprofen and to compare the kinetics after its intragastric, intravenous, and intramuscular administrations in rats. After intravenous administration of the drug at doses of 5-20 mg/kg, the clearance and the volume of distribution for loxoprofen, and the ratios of the AUC for the metabolites to the parent drug were not statistically different with the dosage; the formation clearances were 1.08 and 0.

View Article and Find Full Text PDF
Article Synopsis
  • The study looked at changes made to a specific part of a compound that targets the VR1 receptor, known for its role in pain sensation.
  • The modifications involved swapping out a component called thiourea with various similar functional groups to see how it affected the drug's effectiveness.
  • Findings revealed that the main area influencing whether the drug acted as an agonist (activator) or antagonist (blocker) was in a different part (A-region) of the molecule, while some modified versions showed better pain relief than the original compound.
View Article and Find Full Text PDF

In order to improve the analgesic activity and pharmacokinetics of thioureas 2 and 3, which we previously developed as potent vanilloid receptor (VR) agonists, we prepared and characterized phenolic modifications of them and of their amide surrogates (7, 8). The aminoethyl analogue of the amide template 13 was a potent analgesic with an EC50=0.96 microg/kg in the AA-induced writhing test and with better in vivo stability than the parent phenol.

View Article and Find Full Text PDF