Despite recent research on joint motion measurement to monitor human body movement, current measurement techniques and tools have significant limitations, including requiring large space for measurement and causing discomfort in test subjects wearing motion sensors. Our study aims, first, to develop carbon nanotube (CNT)-based textile joint motion sensors. Second, ours study aims to identify the most suitable CNT-based sensor structure and attachment method for use on a wearable platform during general exercise speeds.
View Article and Find Full Text PDFThis research is an extension of a previous research [1] on the different effects of sensor location that is relatively suitable for heart rate sensing. This research aimed to elucidate the causes of wide variations in heart rate measurements from the same sensor position among subjects, as observed in previous research [1], and to enhance designs of the inductive textile electrode to overcome these variations. To achieve this, this study comprised two parts: In part 1, X-ray examinations were performed to determine the cause of the wide variations noted in the findings from previous research [1], and we found that at the same sensor position, the heart activity signal differed with slight differences in the positions of the heart of each subject owing to individual differences in the anatomical heart location.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
October 2015
There are many types of devices which help to manage a personal health conditions such as heartbeat chest belt, pedometer and smart watch. And the most common device has the relationship with heart rate or ECG data. However, users have to attach some electrode or fasten the belt on the bare skin to measure bio-signal information.
View Article and Find Full Text PDFWe measured the electrical activity signals of the heart through vital signs monitoring garments that have textile electrodes in conductive yarns while the subject is in stable and dynamic motion conditions. To measure the electrical activity signals of the heart during daily activities, four types of monitoring garment were proposed. Two experiments were carried out as follows: the first experiment sought to discover which garment led to the least displacement of the textile electrode from its originally intended location on the wearer's body.
View Article and Find Full Text PDFIn order to monitor electrical activity of the heart during daily life, we present an electrode of a medical instrument system which is able to measure the body surface potential difference by minimizing the electrode distance. The designed electrode is composed of concentric circles. It was made from the basis of the Laplacian equation, and implemented on PCB coated with gold.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
May 2009
The wearable patch-style heart activity monitoring system (HAMS) which was used for recording ECG signal in this study is self-developed. This electrode design helps the non-restricted, non-aware and non-invasive ECG measurement. The modified bipolar electrode is convenient in use because it is designed for easy attachment and detachment with ECG measuring module by snap button.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2008
The concept of intelligent toothbrush, capable of monitoring brushing motion, orientation through the grip axis, during toothbrushing was suggested in our previous study. In this study, we describe a tooth brushing pattern classification algorithm using three-axis accelerometer and three-axis magnetic sensor. We have found that inappropriate tooth brushing pattern showed specific moving patterns.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2008
A small and wireless accelerometer system was developed for the estimation of temporal gait parameters. The new system was built using two 3-axis accelerometers. Measurement's accuracy was assessed using as a criterion standard provided by foot switches.
View Article and Find Full Text PDFConf Proc IEEE Eng Med Biol Soc
February 2008
The design of an intelligent toothbrush, capable of monitoring brushing motion, orientation through the grip axis, during toothbrushing is described. Inappropriate tooth-brushing styles, even in adults, sometimes cause dental problems, cavities, gingivitis, etc. This smart system provides user to monitor his or her brushing pattern using accelerometer and magnetic sensors for evaluation of toothbrushing style.
View Article and Find Full Text PDF