Rh(i) complex catalyzed dimerization of ene-vinylidenecyclopropanes took place smoothly to construct a series of products containing spiro[4,5]decane skeletons featuring a simple operation procedure, mild reaction conditions, and good functional group tolerance. In this paper, the combination of experimental and computational studies reveals a counterion-assisted Rh(i)-Rh(iii)-Rh(v)-Rh(iii)-Rh(i) catalytic cycle involving tandem oxidative cyclometallation/reductive elimination/selective oxidative addition/selective reductive elimination/reductive elimination steps; in addition, a pentavalent spiro-rhodium intermediate is identified as the key intermediate in this dimerization reaction upon DFT calculation.
View Article and Find Full Text PDFA rhodium/silver synergistic catalysis has been established, enabling cycloisomerization/cross coupling of keto-vinylidenecyclopropanes (VDCPs) with terminal alkynes toward the regio- and enantioselective formation of diversified tetrahydropyridin-3-ol tethered 1,4-enynes in good yields and high ee values. In this synergistic catalysis, Rh(I) and Ag(I) catalysts selectively activate keto-VDCP substrates and terminal alkynes to generate the π-allyl Rh(III) complex of oxa-rhodacyclic intermediate and Ag alkynyl intermediate, respectively. The rapid transmetalation of alkynyl groups from Ag to Rh is proposed to play a key role in realizing the regioselective cleavage of the distal bond of the three-membered ring in this transformation.
View Article and Find Full Text PDF