Publications by authors named "Kang Ju Lee"

DNA-encoded library (DEL) technology is a powerful tool for discovering potent ligands for biological targets but constrained by limitations, including the insolubility of DNA in organic solvents and its instability under various reaction conditions, which restrict the reactivity scope and structural diversity achievable in library synthesis. Here, we present a new strategy called nanoDEL, where library molecules and DNA tags are displayed on the surface of nanoparticles. Since nanoparticles disperse well in both organic solvents and aqueous solutions, DEL synthesis can be accomplished using well-established organic solvent-based conditions, eliminating the need for aqueous conditions.

View Article and Find Full Text PDF

Nonproteinogenic amino acids, including d-α-, β-, and γ-amino acids, present in bioactive peptides play pivotal roles in their biochemical activities and proteolytic stabilities. d-α-Amino acids (dαAA) are widely used building blocks that can enhance the proteolytic stability. Cyclic β-amino acids (cβAA), for instance, can fold peptides into rigid secondary structures, improving the binding affinity and proteolytic stability.

View Article and Find Full Text PDF
Article Synopsis
  • Cyclic β-amino acids (cβAAs) are important for creating compact and stable peptide structures, enhancing their resistance to breakdown and improving their ability to bind to target proteins.
  • An engineered tRNA allowed for the efficient incorporation of cβAAs into a macrocyclic peptide library, which was then tested against the SARS-CoV-2 main protease.
  • The peptides BM3 and BM7 demonstrated strong inhibitory effects and exceptional stability in serum, indicating that cβAAs play a crucial role in enhancing the functionality and longevity of peptides in a biological context.
View Article and Find Full Text PDF

In this study, a hydrophobic and antibacterial pad was prepared to preserve Channel Catfish (Ictalurus punctatus). The pad composite the microfibrillated cellulose and β-cyclodextrin/nisin microcapsules. The hydrophobic pad ensures a dry surface in contact with the fish, reducing microbial contamination.

View Article and Find Full Text PDF

The first synthesis of macrocyclic α-ABpeptoids with varying lengths is described. X-ray crystal structures reveal that cyclic trimer displays a chair-like conformation with a amide sequence and cyclic tetramer has a saddle-like structure with an uncommon amide arrangement. The creation of a DNA-encoded combinatorial library of macrocyclic α-ABpeptoids is described.

View Article and Find Full Text PDF

Responsive heat resistance (by heat shock protein upregulation) and spontaneous reactive oxygen species (ROS) detoxification have been regarded as the major obstacles for photothermal/photodynamic therapy of cancer. To overcome the thermal resistance and improve ROS susceptibility in breast cancer therapy, Au ion-crosslinked hydrogels including indocyanine green (ICG) and polyphenol are devised. Au ion has been introduced for gel crosslinking (by catechol-Au coordination), cellular glutathione depletion, and O production from cellular HO.

View Article and Find Full Text PDF

Indocyanine green (ICG), glucose oxidase (GOx), and copper(II) sulfate (Cu)-installed hybrid gel based on organic nanorod (cellulose nanocrystal [CNC]) and inorganic nanodisk (Laponite [LAP]) was developed to perform a combination of starvation therapy (ST), chemodynamic therapy (CDT), and photothermal therapy (PTT) for localized cancers. A hybrid CNC/LAP network with a nematic phase was designed to enable instant gelation, controlled viscoelasticity, syringe injectability, and longer in vivo retention. Moreover, ICG was introduced into the CNC/LAP gel system to induce hyperthermia of tumor tissue, amplifying the CDT effect; GOx was used for glucose deprivation (related to the Warburg effect); and Cu was introduced for hydroxyl radical generation (based on Fenton-like chemistry) and cellular glutathione (GSH) degradation in cancer cells.

View Article and Find Full Text PDF

Background: Flowable hemostatic agents have the advantage of being able to be applied to irregular wound surfaces and difficult to reach areas. We sought to compare the effectiveness and safety of the flowable hemostatic sealants Collastat® (collagen hemostatic matrix, [CHM]) and Floseal® (gelatin hemostatic matrix, [GHM]) during off-pump coronary artery bypass (OPCAB).

Methods: In this prospective, double-blind, randomized controlled trial, 160 patients undergoing elective OPCAB surgery were enrolled between March 2018 and February 2020.

View Article and Find Full Text PDF

We propose a new centrality incorporating two classical node-level centralities, the degree centrality and the information centrality, which are considered as local and global centralities, respectively. These two centralities have expressions in terms of the graph Laplacian L, which motivates us to exploit its fractional analog L^{γ} with a fractional parameter γ. As γ varies from 0 to 1, the proposed fractional version of the information centrality makes intriguing changes in the node centrality rankings.

View Article and Find Full Text PDF

Introduction: Microneedles (MNs) have undergone great advances in transdermal drug delivery, and commercialized MN applications are currently available in vaccination and cosmetic products. Despite the development of MN technologies, common limitations of MN products still exist. Typical MN patches are applied to target tissues, where the substrate of an MN patch must remain until the drug is delivered, which reduces patients' compliance and hinders the applicability of the MN technique to many diseases in various tissues.

View Article and Find Full Text PDF

A hyaluronic acid (HA)-based one-pot hydrogel reactor with single syringe injection and immediate gelation was developed for starvation therapy (ST), chemodynamic therapy (CDT), ferroptosis, and photothermal therapy (PTT) against breast cancer. A rheologically tuned hydrogel network, composed of HA-phenylboronic acid (HP) and HA-dopamine (HD), was designed by introducing a boronate ester linkage (phenylboronic acid-dopamine interaction) and polydopamine bond (pH control). Ferrocene (Fc)-conjugated HP (Fc-HP) was synthesized to achieve ferroptosis, Fenton reaction-involved toxic hydroxyl radical (OH) generation, and photothermal ablation in cancer therapy.

View Article and Find Full Text PDF

Bicyclization has proven to be an effective strategy for significantly restricting conformational flexibility in peptides and peptidomimetics such as peptoids. Such constrained bicyclic peptoids would have far higher conformational rigidity than monocyclic and linear ones, allowing them to have enhanced binding affinity and selectivity for their biological targets. Herein, we show that bicyclic peptoids have superior cellular uptake efficiency than their linear counterparts regardless of their side chains and ring sizes.

View Article and Find Full Text PDF

Silk fibroin (SF) is a promising biomaterial for tendon repair, but its relatively rigid mechanical properties and low cell affinity have limited its application in regenerative medicine. Meanwhile, gelatin-based polymers have advantages in cell attachment and tissue remodeling but have insufficient mechanical strength to regenerate tough tissue such as tendons. Taking these aspects into account, in this study, gelatin methacryloyl (GelMA) is combined with SF to create a mechanically strong and bioactive nanofibrous scaffold (SG).

View Article and Find Full Text PDF

Intravitreal injection (IVI) is a common technology which is used to treat ophthalmic diseases inside eyeballs by delivering various drugs into the vitreous cavity using hypodermic needles. However, in some cases, there are possible side effects such as ocular tissue damage due to repeated injection or eyeball infection through the hole created during the needle retraction process. The best scenario of IVI is a one-time injection of drugs without needle retraction, keeping the system of the eyeball closed.

View Article and Find Full Text PDF

Injectable shear-thinning biomaterials (STBs) have attracted significant attention because of their efficient and localized delivery of cells as well as various molecules ranging from growth factors to drugs. Recently, electrostatic interaction-based STBs, including gelatin/LAPONITE® nanocomposites, have been developed through a simple assembly process and show outstanding shear-thinning properties and injectability. However, the ability of different compositions of gelatin and LAPONITE® to modulate doxorubicin (DOX) delivery at different pH values to enhance the effectiveness of topical skin cancer treatment is still unclear.

View Article and Find Full Text PDF

Increasing evidence from cancer cell fusion with different cell types in the tumor microenvironment has suggested a probable mechanism for how metastasis-initiating cells could be generated in tumors. Although human mesenchymal stem cells (hMSCs) have been known as promising candidates to create hybrid cells with cancer cells, the role of hMSCs in fusion with cancer cells is still controversial. Here, we fabricated a liver-on-a-chip platform to monitor the fusion of liver hepatocellular cells (HepG2) with hMSCs and study their invasive potential.

View Article and Find Full Text PDF

Various perivascular drug delivery techniques have been demonstrated for localized post-treatment of intimal hyperplasia: a vascular inflammatory response caused by endothelial damages. Although most perivascular devices have focused on controlling the delivery duration of anti-proliferation drug, the confined and unidirectional delivery of the drug to the target tissue has become increasingly important. In addition, careful attention should also be paid to the luminal stability and the adequate exchange of vascular protein or cell between the blood vessel and extravascular tissue to avoid any side effect from the long-term application of any perivascular device.

View Article and Find Full Text PDF

Here we describe the design and synthesis of a DNA-encoded library of bicyclic peptoids. We show that our solid-phase strategy is facile and DNA-compatible, yielding a structurally diverse combinatorial library of bicyclic peptoids of various ring sizes. We also demonstrate that affinity-based screening of a DNA-encoded library of bicyclic peptoids enables to efficiently identify high-affinity ligands for a target protein.

View Article and Find Full Text PDF
Article Synopsis
  • The study evaluated the safety of nano-silicon dioxide (nano-SiO) particles found in instant coffee by examining their structure and toxicity using various scientific methods.
  • The nano-SiO samples were mostly amorphous, with a 99% purity, and fell within the particle size range of 10 to 50 nm, which qualifies them as food additives.
  • While nano-SiO did not significantly harm gastrointestinal cells, higher concentrations and longer exposure times resulted in increased cell stress and deformities in zebra fish embryos, indicating potential issues with food safety.
View Article and Find Full Text PDF

Gelatin methacryloyl (GelMA) is a widely used hydrogel with skin-derived gelatin acting as the main constituent. However, GelMA has not been used in the development of wearable biosensors, which are emerging devices that enable personalized healthcare monitoring. This work highlights the potential of GelMA for wearable biosensing applications by demonstrating a fully solution-processable and transparent capacitive tactile sensor with microstructured GelMA as the core dielectric layer.

View Article and Find Full Text PDF

Polypseudorotaxane structure and polydopamine bond-based crosslinked hyaluronic acid (HA) hydrogels including donepezil-loaded microspheres were developed for subcutaneous injection. Both dopamine and polyethylene glycol (PEG) were covalently bonded to the HA polymer for catechol polymerization and inclusion complexation with alpha-cyclodextrin (α-CD), respectively. A PEG chain of HA-dopamine-PEG (HD-PEG) conjugate was threaded with α-CD to make a polypseudorotaxane structure and its pH was adjusted to 8.

View Article and Find Full Text PDF

Infectious keratitis is mainly treated with topical antibiotics. To achieve and maintain the required therapeutic concentration in the cornea where the tear fluid continuously rinses the surface, the antibiotics must be frequently applied, even while the patient is sleeping, and oral medication is sometimes required. However, the inevitably poor compliance and avascular nature of the cornea decrease drug bioavailability.

View Article and Find Full Text PDF

Despite considerable efforts in modeling liver disease in vitro, it remains difficult to recapitulate the pathogenesis of the advanced phases of non-alcoholic fatty liver disease (NAFLD) with inflammation and fibrosis. Here, a liver-on-a-chip platform with bioengineered multicellular liver microtissues is developed, composed of four major types of liver cells (hepatocytes, endothelial cells, Kupffer cells, and stellate cells) to implement a human hepatic fibrosis model driven by NAFLD: i) lipid accumulation in hepatocytes (steatosis), ii) neovascularization by endothelial cells, iii) inflammation by activated Kupffer cells (steatohepatitis), and iv) extracellular matrix deposition by activated stellate cells (fibrosis). In this model, the presence of stellate cells in the liver-on-a-chip model with fat supplementation showed elevated inflammatory responses and fibrosis marker up-regulation.

View Article and Find Full Text PDF

Elaborately and serially pH-modulated hydrogels possessing optimized viscoelastic natures for short gelation time and single syringe injection were designed for peritumoral injection of an anticancer agent. Boronate ester bonds between phenylboronic acid (PBA) (installed in HA-PBA (HP)) and dopamine (included in HA-dopamine (HD)) along with self-polymerization of dopamine (via interactions between HD conjugates) were introduced as the main cross-linking strategies of a hyaluronic acid (HA) hydrogel. Considering p values (8.

View Article and Find Full Text PDF