Publications by authors named "Kandy Napan"

Genetic abnormalities in synaptic proteins are common in individuals with autism; however, our understanding of the cellular and molecular mechanisms disrupted by these abnormalities is limited. SHANK3 is a postsynaptic scaffolding protein of excitatory synapses that has been found mutated or deleted in most patients with 22q13 deletion syndrome and about 2% of individuals with idiopathic autism and intellectual disability. Here, we generated CRISPR/Cas9-engineered human pluripotent stem cells (PSCs) with complete hemizygous SHANK3 deletion (SHANK3), which is the most common genetic abnormality in patients, and investigated the synaptic and morphological properties of SHANK3-deficient PSC-derived cortical neurons engrafted in the mouse prefrontal cortex.

View Article and Find Full Text PDF

Pradimicins are a group of antiviral and antifungal natural products from Actinomadura hibisca. Two putative O-methyltransferase genes, pdmF and pdmT, are present in the pradimicin biosynthetic gene cluster. However, there is only one methoxy group (11-OCH) in pradimicins.

View Article and Find Full Text PDF

Pradimicins are antifungal and antiviral natural products from Actinomadura hibisca P157-2. The sugar moieties play a critical role in the biological activities of these compounds. There are two glycosyltransferase genes in the pradimicin biosynthetic gene cluster, pdmS and pdmQ, which are putatively responsible for the introduction of the sugar moieties during pradimicin biosynthesis.

View Article and Find Full Text PDF

Three key tailoring enzymes in pradimicin biosynthesis: PdmJ, PdmW, and PdmN, were investigated. PdmW was characterized as the C-6 hydroxylase by structural characterization of the corresponding product, 6-hydroxy-G-2A. The efficiencies of the C-5 and C-6 hydroxylations, catalyzed respectively by PdmJ and PdmW, were low when they were expressed individually with the early biosynthetic enzymes that form G-2A.

View Article and Find Full Text PDF

Pradimicins A-C (1-3) are a group of antifungal and antiviral polyketides from Actinomadura hibisca. The sugar moieties in pradimicins are required for their biological activities. Consequently, the 5-OH that is used for glycosylation plays a critical role in pradimicin biosynthesis.

View Article and Find Full Text PDF