Publications by authors named "Kande Lin"

Eukaryotic gene transcription is fine-tuned by precise spatiotemporal interactions between -regulatory elements (CREs) and -acting factors. However, how CREs individually or coordinated with epigenetic marks function in regulating homoeolog bias expression is still largely unknown in wheat. In this study, through comprehensively characterizing open chromatin coupled with DNA methylation in the seedling and spikelet of common wheat, we observed that differential chromatin openness occurred between the seedling and spikelet, which plays important roles in tissue development through regulating the expression of related genes or through the transcription factor (TF)-centered regulatory network.

View Article and Find Full Text PDF

Polyploidization drives regulatory and phenotypic innovation. How the merger of different genomes contributes to polyploid development is a fundamental issue in evolutionary developmental biology and breeding research. Clarifying this issue is challenging because of genome complexity and the difficulty in tracking stochastic subgenome divergence during development.

View Article and Find Full Text PDF

Leaf angle is an important agronomic trait determining maize (Zea mays) planting density and light penetration into the canopy and contributes to the yield gain in modern maize hybrids. However, little is known about the molecular mechanisms underlying leaf angle beyond the ZmLG1 (liguleless1) and ZmLG2 (Liguleless2) genes. In this study, we found that the transcription factor (TF) ZmBEH1 (BZR1/BES1 homolog gene 1) is targeted by ZmLG2 and regulates leaf angle formation by influencing sclerenchyma cell layers on the adaxial side.

View Article and Find Full Text PDF

More than 80% of the wheat genome consists of transposable elements (TEs), which act as major drivers of wheat genome evolution. However, their contributions to the regulatory evolution of wheat adaptations remain largely unclear. Here, we created genome-binding maps for 53 transcription factors (TFs) underlying environmental responses by leveraging DAP-seq in , together with epigenomic profiles.

View Article and Find Full Text PDF

Wheat (Triticum aestivum) has a large allohexaploid genome. Subgenome-divergent regulation contributed to genome plasticity and the domestication of polyploid wheat. However, the specificity encoded in the wheat genome determining subgenome-divergent spatio-temporal regulation has been largely unexplored.

View Article and Find Full Text PDF

Background: Bread wheat is an allohexaploid species with a 16-Gb genome that has large intergenic regions, which presents a big challenge for pinpointing regulatory elements and further revealing the transcriptional regulatory mechanisms. Chromatin profiling to characterize the combinatorial patterns of chromatin signatures is a powerful means to detect functional elements and clarify regulatory activities in human studies.

Results: In the present study, through comprehensive analyses of the open chromatin, DNA methylome, seven major chromatin marks, and transcriptomic data generated for seedlings of allohexaploid wheat, we detected distinct chromatin architectural features surrounding various functional elements, including genes, promoters, enhancer-like elements, and transposons.

View Article and Find Full Text PDF

We conducted genome-wide identification of R-loops followed by integrative analyses of R-loops with relation to gene expression and epigenetic signatures in the rice genome. We found that the correlation between gene expression levels and profiled R-loop peak levels was dependent on the positions of R-loops within gene structures (hereafter named "genic position"). Both antisense only (ASO)-R-loops and sense/antisense (S/AS)-R-loops sharply peaked around transcription start sites (TSSs), and these peak levels corresponded positively with transcript levels of overlapping genes.

View Article and Find Full Text PDF

The elucidation of epigenetic responses of salt-responsive genes facilitates understanding of the underlying mechanisms that confer salt tolerance in rice. However, it is still largely unknown how epigenetic mechanisms are associated with the expression of salt-responsive genes in rice and other crops. In this study, we reported tissue-specific gene expression and tissue-specific changes in chromatin modifications or signatures between seedlings and roots in response to salt treatment.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session9hi2qfdcj2jvj7cdf341t9pqe9ccuce6): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once