Polyphosphates (polyP) are chains of inorganic phosphates that can reach over 1,000 residues in length. In Escherichia coli, polyP is produced by the polyP kinase (PPK) and is thought to play a protective role during the response to cellular stress. However, the molecular pathways impacted by PPK activity and polyP accumulation remain poorly characterized.
View Article and Find Full Text PDFPolyphosphates (polyP) are chains of inorganic phosphates that can reach over 1000 residues in length. In , polyP is produced by the polyP kinase (PPK) and is thought to play a protective role during the response to cellular stress. However, the molecular pathways impacted by PPK activity and polyP accumulation remain poorly characterized.
View Article and Find Full Text PDFPolyphosphate (polyP) is a universally conserved molecule that plays critical roles in managing bacterial stress responses, in addition to biofilm formation and virulence. The enzymes that make polyphosphate molecules are called polyphosphate kinases (PPKs). Since these enzymes are not conserved in higher eukaryotes, PPKs make excellent therapeutic targets.
View Article and Find Full Text PDFPolyphosphate (polyP) is a ubiquitous biomolecule thought to be present in all cells on Earth. PolyP is deceivingly simple, consisting of repeated units of inorganic phosphates polymerized in long energy-rich chains. PolyP is involved in diverse functions in mammalian systems-from cell signaling to blood clotting.
View Article and Find Full Text PDFPolyphosphates (polyPs) are long chains of inorganic phosphates linked by phosphoanhydride bonds. They are found in all kingdoms of life, playing roles in cell growth, infection, and blood coagulation. Unlike in bacteria and lower eukaryotes, the mammalian enzymes responsible for polyP metabolism are largely unexplored.
View Article and Find Full Text PDF