Publications by authors named "Kanazawa Sanshiro"

Article Synopsis
  • Hematopoietic stem/progenitor cells (HSCs) rely on interactions with mesenchymal stem/stromal cells (MSCs) to maintain their self-renewal and multipotency, which are crucial for medical applications.
  • Culturing MSCs to increase their numbers leads to a loss of important stem cell traits, including their ability to differentiate and proliferate effectively.
  • The study reveals that the c-Mpl signaling pathway is vital for HSC maintenance and enhances MSC proliferation; without this signaling, both HSC functionality and MSC stem cell markers are diminished.
View Article and Find Full Text PDF

Although multiple studies have investigated the mesenchymal stem and progenitor cells (MSCs) that give rise to mature bone marrow, high heterogeneity in their morphologies and properties causes difficulties in molecular separation of their distinct populations. In this study, by taking advantage of the resolution of the single cell transcriptome, we analyzed Sca-1 and PDGFR-α fraction in the mouse bone marrow tissue. The single cell transcriptome enabled us to further classify the population into seven populations according to their gene expression profiles.

View Article and Find Full Text PDF

Introduction: Currently, various kinds of materials are used for the treatment of bone defects. In general, these materials have a problem of formativeness. The three -dimensional (3D) printing technique has been introduced to fabricate artificial bone with arbitrary shapes, but poor bone replacement is still problematic.

View Article and Find Full Text PDF

Instead of the silicone implants previously used for repair and reconstruction of the auricle and nose lost due to accidents and disease, a new treatment method using tissue-engineered cartilage has been attracting attention. The quality of cultured cells is important in this method because it affects treatment outcomes. However, a marker of chondrocytes, particularly auricular chondrocytes, has not yet been established.

View Article and Find Full Text PDF

Introduction: We have developed an implant-type tissue-engineered cartilage using a poly-l-lactide scaffold. In a clinical study, it was inserted into subcutaneous areas of nasal dorsum in three patients, to correct cleft lip-nose deformity. The aim of this study was to helping evaluation on the efficacy of the regenerative cartilage.

View Article and Find Full Text PDF

Glial fibrillary acidic protein (GFAP) is an intermediate filament that is expressed in specifically expressed auricular chondrocytes, which are good cell sources of cartilage regenerative medicine. Although our group uses GFAP as a biomarker of matrix production in the cultured auricular chondrocytes, the biological roles of GFAP in auricular chondrocytes has remained unknown. In this study, we demonstrated the biological functions of GFAP in the human and mouse derived auricles to clarify the significance and role with the chondrocytes of GFAP in order to provide useful information for reliable and safe regenerative medicine.

View Article and Find Full Text PDF

Cell culture medium, which must be discarded during medium change, may contain many cells that do not attach to culture plates. In the present study, we focused on these floating cells and attempted to determine their usefulness for cartilage regeneration. We counted the number of floating cells discarded during medium change and compared the proliferation and differentiation between floating cells and their adherent counterparts.

View Article and Find Full Text PDF

To disclose the influence of foreign body responses raised against a non-absorbable hydrogel consisting of tissue-engineered cartilage, we embedded human/canine chondrocytes within agarose and transplanted them into subcutaneous pockets in nude mice and donor beagles. One month after transplantation, cartilage formation was observed in the experiments using human chondrocytes in nude mice. No significant invasion of blood cells was noted in the areas where the cartilage was newly formed.

View Article and Find Full Text PDF

To optimize the chondrocyte numbers obtained after collagenase digestion for cartilage tissue engineering, we examined the enzyme concentration and incubation time for collagenase digestion. The appropriate cell density in the chondrocyte primary culture was also verified. The collagenase digestion conditions that maximized the viable cell numbers were 24 h in 0.

View Article and Find Full Text PDF