Publications by authors named "Kanan Lathia"

The mammalian brain consists of millions to billions of cells that are organized into many cell types with specific spatial distribution patterns and structural and functional properties. Here we report a comprehensive and high-resolution transcriptomic and spatial cell-type atlas for the whole adult mouse brain. The cell-type atlas was created by combining a single-cell RNA-sequencing (scRNA-seq) dataset of around 7 million cells profiled (approximately 4.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the cellular structure of the human cortex to define different cortical areas using single-cell transcriptomics.
  • Researchers performed RNA-sequencing across eight cortical areas and found consistent cellular makeup, but notable variations in the proportion of excitatory neuron subclasses, indicating differences in connectivity.
  • Findings include unique features in the primary visual cortex, such as changes in the ratio of excitatory to inhibitory neurons and an expansion of excitatory neurons in layer 4, suggesting a need for refined understanding of human cortical organization.
View Article and Find Full Text PDF
Article Synopsis
  • The brain of a mouse has millions of different cells, and scientists want to make a complete list of these cell types to understand how the brain works.
  • Researchers created a detailed map of these cells by studying around 7 million cells with a special technique that looks at their genes and how they are placed in the brain.
  • They discovered that there are many different types of cells in the brain, with some areas being very unique, like the dorsal part having fewer but more distinct types, while the ventral part has many similar types.
View Article and Find Full Text PDF

Single-cell transcriptomics can provide quantitative molecular signatures for large, unbiased samples of the diverse cell types in the brain. With the proliferation of multi-omics datasets, a major challenge is to validate and integrate results into a biological understanding of cell-type organization. Here we generated transcriptomes and epigenomes from more than 500,000 individual cells in the mouse primary motor cortex, a structure that has an evolutionarily conserved role in locomotion.

View Article and Find Full Text PDF

The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals. Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species.

View Article and Find Full Text PDF
Article Synopsis
  • The isocortex and hippocampal formation (HPF) in mammals are crucial for functions like perception, cognition, and learning.
  • A study of approximately 1.3 million cells identified numerous types of glutamatergic and GABAergic neurons, challenging the idea that HPF has a simpler structure compared to the six-layered isocortex.
  • The findings reveal that both regions share similar circuit organization and highlight the complexity and variations of cell types within these brain areas, providing insights into their development and function.
View Article and Find Full Text PDF

Elucidating the cellular architecture of the human cerebral cortex is central to understanding our cognitive abilities and susceptibility to disease. Here we used single-nucleus RNA-sequencing analysis to perform a comprehensive study of cell types in the middle temporal gyrus of human cortex. We identified a highly diverse set of excitatory and inhibitory neuron types that are mostly sparse, with excitatory types being less layer-restricted than expected.

View Article and Find Full Text PDF

Transcriptomic profiling of complex tissues by single-nucleus RNA-sequencing (snRNA-seq) affords some advantages over single-cell RNA-sequencing (scRNA-seq). snRNA-seq provides less biased cellular coverage, does not appear to suffer cell isolation-based transcriptional artifacts, and can be applied to archived frozen specimens. We used well-matched snRNA-seq and scRNA-seq datasets from mouse visual cortex to compare cell type detection.

View Article and Find Full Text PDF

The neocortex contains a multitude of cell types that are segregated into layers and functionally distinct areas. To investigate the diversity of cell types across the mouse neocortex, here we analysed 23,822 cells from two areas at distant poles of the mouse neocortex: the primary visual cortex and the anterior lateral motor cortex. We define 133 transcriptomic cell types by deep, single-cell RNA sequencing.

View Article and Find Full Text PDF

Broadly neutralizing HIV-1 antibodies (bNAbs) isolated from infected subjects display protective potential in animal models. Their elicitation by immunization is thus highly desirable. The HIV-1 envelope glycoprotein (Env) is the sole viral target of bnAbs, but is also targeted by binding, non-neutralizing antibodies.

View Article and Find Full Text PDF

From 1,000 randomly selected colonies from cDNA libraries derived from murine spinal cord subtracted against white matter by means of suppression subtractive hybridization, 220 clones were identified as differentially expressed by dot blot analysis. Sequence analysis by the BLAST programming identified 140 unique genes. (1) The percentage of known sequences from myelin and other glial sources was reduced by approximately 75% over previous, similar subtractions employing visual cortex as the driver.

View Article and Find Full Text PDF

Comparison of cDNA libraries derived from the spinal cord with those derived from the visual cortex by means of forward and reverse subtractive hybridization resulted in the cataloguing of 60 genes differentially expressed in the spinal cord. 1. The differentially expressed genes represent a mixture of novel and known sequences with known and unknown protein products.

View Article and Find Full Text PDF