Publications by authors named "Kanami Niiyama"

This study aimed to identify the components of proton pump inhibitors (PPIs) or potassium-competitive acid blocker (PCAB) that lead to cardiovascular events in individuals of working age. We analyzed large claims data of individuals who were administered PPIs or PCAB. We enrolled working-age individuals administered PPI or PCAB without cardiovascular history with a 12-month screening and 12-month observation period and determined the proportion of cardiovascular events and the predictive factors of cardiovascular events in this population.

View Article and Find Full Text PDF

The thermogenic function of brown adipose tissue (BAT) is known to be markedly elevated when animals are exposed to the cold, and intensive studies have been carried out to understand the molecular basis enabling effective thermogenesis in cold-exposed animals. In this study, we used microarray analysis to examine the effects of cold exposure of animals on their gene expression profiles in white adipose tissue (WAT), which seems to function as a counterpart tissue of BAT. The results indicate that the effects of cold exposure on the gene expression profiles of WAT were much more moderate than the effects on those of BAT.

View Article and Find Full Text PDF

The manner of interaction of the coat peptide of the Pf3 phage (Pf3 peptide) with lipid bilayers has been extensively studied. Presently, we designed a derivative of the Pf3 peptide, referred to as the DDRK peptide, and subjected it to trypsin digestion to understand its physicochemical properties. In the presence of Triton X-100 used for solubilization of the peptide, digestion of DDRK with trypsin caused specific cleavage at the lysine (Lys) residue in its N-terminal region but not at other Lys residues or at the arginine residue.

View Article and Find Full Text PDF

Substitution of amino acids in a peptide caused remarkable differences in its immunoreactivities with antibodies against 3 epitopes in the immobilized peptide. The observed differences in immunoreactivities among the peptides were not due to the differences in efficiencies of their transfer onto nitrocellulose or PVDF membranes. Rather, possible folding of the peptide on the membrane was considered to be the reason for their distinct immunoreactivities with the antibodies.

View Article and Find Full Text PDF