Publications by authors named "Kanako O Koyanagi"

Article Synopsis
  • - The study identifies endogenous viral elements in rice genomes, specifically the endogenous RTBV-like sequences (eRTBVLs), which exist in five subfamilies, with subfamilies A, B, C, and X found in cultivated and wild rice species to some extent.
  • - Researchers focused on eRTBVL-D sequences, which are commonly distributed across AA-genome species, and discovered that these sequences were inserted just before the speciation of these species, with 15 eRTBVL-D segments located in similar chromosomal positions.
  • - Evolutionary analysis revealed divergence in genetic differentiation among eRTBVL-D segments, resulting in two types of phylogenetic trees: one aligning with the standard speciation pattern and the
View Article and Find Full Text PDF

Objective: Diversification of cell types and changes in epigenetic states during cell differentiation processes are important for understanding development. Recently, phylogenetic analysis using DNA methylation and histone modification information has been shown useful for inferring these processes. The purpose of this study was to examine whether chromatin accessibility data can help infer these processes in murine hematopoiesis.

View Article and Find Full Text PDF

Understanding genetic diversity among local populations is a primary goal of modern crop breeding programs. Here, we demonstrated the genetic relationships of rice varieties in Hokkaido, Japan, one of the northern limits of rice cultivation around the world. Furthermore, artificial selection during rice breeding programs has been characterized using genome sequences.

View Article and Find Full Text PDF

Revealing the landscape of epigenetic changes in cells during differentiation is important for understanding the development of organisms. In this study, to infer such epigenetic changes during human hematopoiesis, ancestral state estimation based on a phylogenetic tree was applied to map the epigenomic changes in six kinds of histone modifications onto the hierarchical cell differentiation process of hematopoiesis using epigenomes of eight types of differentiated hematopoietic cells. The histone modification changes inferred during hematopoiesis showed that changes that occurred on the branches separating different cell types reflected the characteristics of hematopoiesis in terms of genomic position and gene function.

View Article and Find Full Text PDF

Endomorphins are neuropeptides that bind strongly to μ-opioid receptors and are considered to play important roles in pain modulation and other biological functions. Two endomorphins have been identified, to date, endomorphine-1 and -2; both are tetrapeptides and differ by only a single amino acid in the third position. Both peptides were isolated from bovine brains; however, their precursor genes have not been identified.

View Article and Find Full Text PDF

Revealing the landscape of epigenetic changes in cells during differentiation is important for understanding the development of organisms. In this study, to infer such epigenetic changes during human hematopoiesis, ancestral state estimation based on a phylogenetic tree was applied to map the epigenomic changes in six kinds of histone modifications onto the hierarchical cell differentiation process of hematopoiesis using epigenomes of eight types of differentiated hematopoietic cells. The histone modification changes inferred during hematopoiesis showed that changes that occurred on the branches separating different cell types reflected the characteristics of hematopoiesis in terms of genomic position and gene function.

View Article and Find Full Text PDF

Background: Retroposition, one of the processes of copying the genetic material, is an important RNA-mediated mechanism leading to the emergence of new genes. Because the transcription controlling segments are usually not copied to the new location in this mechanism, the duplicated gene copies (retrocopies) become pseudogenized. However, few can still survive, e.

View Article and Find Full Text PDF

Plant breeding programs in local regions may generate genetic variations that are desirable to local populations and shape adaptability during the establishment of local populations. To elucidate genetic bases for this process, we proposed a new approach for identifying the genetic bases for the traits improved during rice breeding programs; association mapping focusing on a local population. In the present study, we performed association mapping focusing on a local rice population, consisting of 63 varieties, in Hokkaido, the northernmost region of Japan and one of the northern limits of rice cultivation worldwide.

View Article and Find Full Text PDF

Unlabelled: Human mastadenovirus D (HAdV-D) is exceptionally rich in type among the seven human adenovirus species. This feature is attributed to frequent intertypic recombination events that have reshuffled orthologous genomic regions between different HAdV-D types. However, this trend appears to be paradoxical, as it has been demonstrated that the replacement of some of the interacting proteins for a specific function with other orthologues causes malfunction, indicating that intertypic recombination events may be deleterious.

View Article and Find Full Text PDF

How cells divide and differentiate is a fundamental question in organismal development; however, the discovery of differentiation processes in various cell types is laborious and sometimes impossible. Phylogenetic analysis is typically used to reconstruct evolutionary processes based on inherent characters. It could also be used to reconstruct developmental processes based on the developmental changes that occur during cell proliferation and differentiation.

View Article and Find Full Text PDF
Article Synopsis
  • Research indicates that viral fossils in rice genomes, known as endogenous rice tungro bacilliform virus-like (eRTBVL) sequences, provide valuable insights into ancient viral activities and the historical development of rice.
  • The study analyzed about 300 eRTBVL sequences from three rice genomes, categorizing them into six families and revealing that most of these viral integrations occurred over 160,000 years ago, before rice species fully differentiated.
  • Findings suggest that the genealogy of these ancient viruses can be traced back through rice’s evolution, with a limited number of recombination events significantly shaping their genetic history.
View Article and Find Full Text PDF

Recently, new genotypes of human adenoviruses (HAdVs) have been reported and many of them have been found to be recombinant forms of different known types of HAdV species D (HAdV-D). The objective of this study was to document the evolutionary features of a novel isolate (HAdV_Chiba_E086/2012) obtained from the eye swab of a patient with conjunctivitis in Japan. Viral DNA was extracted from the isolate to sequence the whole genome by the Sanger method and aligned with available genome sequences of HAdV-Ds.

View Article and Find Full Text PDF

Human adenovirus species D (HAdV-D), which is composed of clinically and epidemiologically important pathogens worldwide, contains more taxonomic "types" than any other species of the genus Mastadenovirus, although the mechanisms accounting for the high level of diversity remain to be disclosed. Recent studies of known and new types of HAdV-D have indicated that intertypic recombination between distant types contributes to the increasing diversity of the species. However, such findings raise the question as to how homologous recombination events occur between diversified types since homologous recombination is suppressed as nucleotide sequences diverge.

View Article and Find Full Text PDF

In plant genomes, the incorporation of DNA segments is not a common method of artificial gene transfer. Nevertheless, various segments of pararetroviruses have been found in plant genomes in recent decades. The rice genome contains a number of segments of endogenous rice tungro bacilliform virus-like sequences (ERTBVs), many of which are present between AT dinucleotide repeats (ATrs).

View Article and Find Full Text PDF

Brachyury, a member of the T-box transcription family, has been suggested to be essential for morphogenetic movements in various processes of animal development. However, little is known about its critical transcriptional targets. In order to identify targets of Brachyury and understand the molecular mechanisms underlying morphogenetic movements, we first searched the genome sequence of Xenopus tropicalis, the only amphibian genomic sequence available, for Brachyury-binding sequences known as T-half sites, and then screened for the ones conserved between vertebrate genomes.

View Article and Find Full Text PDF

Human adenovirus type 53 (HAdV-53) has commonly been detected in samples from epidemic keratoconjunctivitis (EKC) patients in Japan since 1996. HAdV-53 is an intermediate virus, containing hexon-chimeric, penton base and fiber structures similar to HAdV-22 and -37, HAdV-37 and HAdV-8, respectively. HAdV-53-like intermediate strains were first isolated from EKC samples in Japan in the 1980s.

View Article and Find Full Text PDF

For 4 months from September 2008, 102 conjunctival swab specimens were collected for surveillance purposes from patients across Japan suspected of having epidemic keratoconjunctivitis (EKC). Human adenovirus (HAdV) DNA was detected in 61 samples by PCR, though the HAdV type for 6 of the PCR-positive samples could not be determined by phylogenetic analysis using a partial hexon gene sequence. Moreover, for 2 months from January 2009, HAdV strains with identical sequences were isolated from five conjunctival swab samples obtained from EKC patients in five different regions of Japan.

View Article and Find Full Text PDF

Alternative usage of transcription start sites (TSSs) is one of the key mechanisms to generate gene variation in eukaryotes. Here, we show diversified molecular evolution of TSSs in remotely related flowering plants, rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana), by comprehensive analyses of large collections of full-length cDNAs and genome sequences. We determined 45,917 representative TSSs within 23,445 loci of rice and 35,313 TSSs within 16,964 loci of Arabidopsis, about two TSSs per locus in either species.

View Article and Find Full Text PDF

The Rice Annotation Project Database (RAP-DB) was created to provide the genome sequence assembly of the International Rice Genome Sequencing Project (IRGSP), manually curated annotation of the sequence, and other genomics information that could be useful for comprehensive understanding of the rice biology. Since the last publication of the RAP-DB, the IRGSP genome has been revised and reassembled. In addition, a large number of rice-expressed sequence tags have been released, and functional genomics resources have been produced worldwide.

View Article and Find Full Text PDF

Here we report the new features and improvements in our latest release of the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/), a comprehensive annotation resource for human genes and transcripts.

View Article and Find Full Text PDF

Orthologs are genes in different species that evolved from a common ancestral gene by speciation. Currently, with the rapid growth of transcriptome data of various species, more reliable orthology information is prerequisite for further studies. However, detection of orthologs could be erroneous if pairwise distance-based methods, such as reciprocal BLAST searches, are utilized.

View Article and Find Full Text PDF

We present here the annotation of the complete genome of rice Oryza sativa L. ssp. japonica cultivar Nipponbare.

View Article and Find Full Text PDF

Despite the wide distribution of processed pseudogenes in mammalian genomes, such as those of human and mouse, relatively little is known about their roles in genomic evolution. While gene duplications are recognized as one of the major driving forces in genome evolution, processed pseudogenes, which are retrotransposed copies of mRNAs, have been regarded as junk or selfish DNA for a long time. In order to elucidate the quantitative and qualitative contribution of processed pseudogenes to the mammalian genome evolution, we attempted to detect processed pseudogenes by extensively mapping the mRNAs to both the human and mouse genomes, and then we estimated the rate of their emergence.

View Article and Find Full Text PDF