The intraflagellar transport (IFT) machinery plays a crucial role in the bidirectional trafficking of components necessary for ciliary signaling, such as the Hedgehog, Wnt/PCR, and cAMP/PKA systems. Defects in some components of the IFT machinery cause dysfunction, leading to a wide range of human diseases and developmental disorders termed ciliopathies, such as nephronophthisis. The IFT machinery comprises three sub-complexes: BBsome, IFT-A, and IFT-B.
View Article and Find Full Text PDFThe pre-spliceosomal complex involves interactions between U1 and U2 snRNPs, where a ubiquitin-like domain (ULD) of SF3A1, a component of U2 snRNP, binds to the stem-loop 4 (SL4; the UUCG tetraloop) of U1 snRNA in U1 snRNP. Here, we reported the 1.80 Å crystal structure of human SF3A1 ULD (ULDSF3A1) complexed with SL4.
View Article and Find Full Text PDFRibosome biogenesis is a complicated, multistage process coordinated by ribosome assembly factors. Ribosome binding factor A (RbfA) is a bacterial one, which possesses a single structural type-II KH domain. By this domain, RbfA binds to a 16S rRNA precursor in small ribosomal subunits to promote its 5'-end processing.
View Article and Find Full Text PDFMatrin-3 is a multifunctional protein that binds to both DNA and RNA. Its DNA-binding activity is linked to the formation of the nuclear matrix and transcriptional regulation, while its RNA-binding activity is linked to mRNA metabolism including splicing, transport, stabilization, and degradation. Correspondingly, Matrin-3 has two zinc finger domains for DNA binding and two consecutive RNA recognition motif (RRM) domains for RNA binding.
View Article and Find Full Text PDFThe accurate exclusion of introns by RNA splicing is critical for the production of mature mRNA. U2AF1 binds specifically to the 3´ splice site, which includes an essential AG dinucleotide. Even a single amino acid mutation of U2AF1 can cause serious disease such as certain cancers or myelodysplastic syndromes.
View Article and Find Full Text PDFIn humans, YTH (YT521-B homology) domain containing protein 2 (YTHDC2) plays a crucial role in the phase-shift from mitosis to meiosis. YTH domains bind to methylated adenosine nucleotides such as mA. In a phylogenic tree, the YTH domain of YTHDC2 (YTH2) and that of the YTH containing protein YTHDC1 (YTH1) belong to the same sub-group.
View Article and Find Full Text PDFThe spliceosomal protein SF3b49, a component of the splicing factor 3b (SF3b) protein complex in the U2 small nuclear ribonucleoprotein, contains two RNA recognition motif (RRM) domains. In yeast, the first RRM domain (RRM1) of Hsh49 protein (yeast orthologue of human SF3b49) reportedly interacts with another component, Cus1 protein (orthologue of human SF3b145). Here, we solved the solution structure of the RRM1 of human SF3b49 and examined its mode of interaction with a fragment of human SF3b145 using NMR methods.
View Article and Find Full Text PDFThe pre-mRNA splicing reaction of eukaryotic cells has to be carried out extremely accurately, as failure to recognize the splice sites correctly causes serious disease. The small subunit of the U2AF heterodimer is essential for the determination of 3' splice sites in pre-mRNA splicing, and several single-residue mutations of the U2AF small subunit cause severe disorders such as myelodysplastic syndromes. However, the mechanism of RNA recognition is poorly understood.
View Article and Find Full Text PDFD-Serine is an essential coagonist with glutamate for stimulation of N-methyl-D-aspartate (NMDA) glutamate receptors. Although astrocytic metabolic processes are known to regulate synaptic glutamate levels, mechanisms that control D-serine levels are not well defined. Here we show that d-serine production in astrocytes is modulated by the interaction between the D-serine synthetic enzyme serine racemase (SRR) and a glycolytic enzyme, glyceraldehyde 3-phosphate dehydrogenase (GAPDH).
View Article and Find Full Text PDFWe developed fluorescent turn-on probes containing a fluorescent nucleoside, 5-(benzofuran-2-yl)deoxyuridine (dU(BF)) or 5-(3-methylbenzofuran-2-yl)deoxyuridine (dU(MBF)), for the detection of single-stranded DNA or RNA by utilizing DNA triplex formation. Fluorescence measurements revealed that the probe containing dU(MBF) achieved superior fluorescence enhancement than that containing dU(BF). NMR and fluorescence analyses indicated that the fluorescence intensity increased upon triplex formation partly as a consequence of a conformational change at the bond between the 3-methylbenzofuran and uracil rings.
View Article and Find Full Text PDFNat Struct Mol Biol
September 2014
Tissue-specific alternative pre-mRNA splicing is often cooperatively regulated by multiple splicing factors, but the structural basis of cooperative RNA recognition is poorly understood. In Caenorhabditis elegans, ligand binding specificity of fibroblast growth factor receptors (FGFRs) is determined by mutually exclusive alternative splicing of the sole FGFR gene, egl-15. Here we determined the solution structure of a ternary complex of the RNA-recognition motif (RRM) domains from the RBFOX protein ASD-1, SUP-12 and their target RNA from egl-15.
View Article and Find Full Text PDFThe family of cytoplasmic polyadenylation element binding proteins CPEB1, CPEB2, CPEB3, and CPEB4 binds to the 3'-untranslated region (3'-UTR) of mRNA, and plays significant roles in mRNA metabolism and translation regulation. They have a common domain organization, involving two consecutive RNA recognition motif (RRM) domains followed by a zinc finger domain in the C-terminal region. We solved the solution structure of the first RRM domain (RRM1) of human CPEB3, which revealed that CPEB3 RRM1 exhibits structural features distinct from those of the canonical RRM domain.
View Article and Find Full Text PDFThe WWE domain is often identified in proteins associated with ubiquitination or poly-ADP-ribosylation. Structural information about WWE domains has been obtained for the ubiquitination-related proteins, such as Deltex and RNF146, but not yet for the poly-ADP-ribose polymerases (PARPs). Here we determined the solution structures of the WWE domains from PARP11 and PARP14, and compared them with that of the RNF146 WWE domain.
View Article and Find Full Text PDFHuman Transformer2-β (hTra2-β) is an important member of the serine/arginine-rich protein family, and contains one RNA recognition motif (RRM). It controls the alternative splicing of several pre-mRNAs, including those of the calcitonin/calcitonin gene-related peptide (CGRP), the survival motor neuron 1 (SMN1) protein and the tau protein. Accordingly, the RRM of hTra2-β specifically binds to two types of RNA sequences [the CAA and (GAA)(2) sequences].
View Article and Find Full Text PDFThe zinc finger CW (zf-CW) domain is a motif of about 60 residues that is frequently found in proteins involved in epigenetic regulation. Here, we determined the NMR solution structure of the zf-CW domain of the human zf-CW and PWWP domain containing protein 1 (ZCWPW1). The zf-CW domain adopts a new fold in which a zinc ion is coordinated tetrahedrally by four conserved Cys ligand residues.
View Article and Find Full Text PDFNucleic Acids Symp Ser (Oxf)
May 2010
SELEX is a conventional method to obtain high affinity nucleic acids to target molecules. In this study, high affinity RNA molecules against SRP19 protein were selected by using a randomized library. The primary and predicted secondary structures of the aptamers are different from those of S-domain RNA which is the natural target of SRP19 protein.
View Article and Find Full Text PDFThe CUG-binding protein 1 (CUG-BP1) is a member of the CUG-BP1 and ETR-like factors (CELF) family or the Bruno-like family and is involved in the control of splicing, translation and mRNA degradation. Several target RNA sequences of CUG-BP1 have been predicted, such as the CUG triplet repeat, the GU-rich sequences and the AU-rich element of nuclear pre-mRNAs and/or cytoplasmic mRNA. CUG-BP1 has three RNA-recognition motifs (RRMs), among which the third RRM (RRM3) can bind to the target RNAs on its own.
View Article and Find Full Text PDFThe human AU RNA binding protein/enoyl-Coenzyme A hydratase (AUH) is a 3-hydroxy-3-methylglutaconyl-CoA dehydratase in the leucine degradation pathway. It also possesses an RNA-binding activity to AUUU repeats, which involves no known conserved RNA-binding domains and is seemingly unrelated to the enzymatic activity. In this study, we performed mass spectrometric analyses to elucidate the oligomeric states of AUH in the presence and absence of RNA.
View Article and Find Full Text PDFT cell intracellular antigen-1 (TIA-1), an apoptosis promoting factor, functions as a splicing regulator for the Fas pre-mRNA. TIA-1 possesses three RNA recognition motifs (RRMs) and a glutamine-rich domain. The second RRM (RRM2) is necessary and sufficient for tight, sequence-specific binding to the uridine-rich sequences buried around the 5' splice sites.
View Article and Find Full Text PDFThe spliceosomal protein p14, a component of the SF3b complex in the U2 small nuclear ribonucleoprotein (snRNP), is essential for the U2 snRNP to recognize the branch site adenosine. The elucidation of the dynamic process of the splicing machinery rearrangement awaited the solution structural information. We identified a suitable complex of human p14 and the SF3b155 fragment for the determination of its solution structure by NMR.
View Article and Find Full Text PDFThe SF3a complex, consisting of SF3a60, SF3a66, and SF3a120, in 17S U2 snRNP is crucial to spliceosomal assembly. SF3a120 contains two tandem SURP domains (SURP1 and SURP2), and SURP2 is responsible for binding to SF3a60. We found that the SURP2 fragment forms a stable complex with an SF3a60 fragment (residues 71-107) and solved its structure by NMR spectroscopy.
View Article and Find Full Text PDF