The tight junction (TJ) in epithelial cells is formed by integral membrane proteins and cytoplasmic scaffolding proteins. The former contains the claudin family proteins with four transmembrane segments, while the latter includes Par3, a PDZ domain-containing adaptor that organizes TJ formation. Here we show the single membrane-spanning protein TMEM25 localizes to TJs in epithelial cells and binds to Par3 via a PDZ-mediated interaction with its C-terminal cytoplasmic tail.
View Article and Find Full Text PDFProper mitotic spindle orientation requires that astral microtubules are connected to the cell cortex by the microtubule-binding protein NuMA, which is recruited from the cytoplasm. Cortical recruitment of NuMA is at least partially mediated via direct binding to the adaptor protein LGN. LGN normally adopts a closed conformation via an intramolecular interaction between its N-terminal NuMA-binding domain and its C-terminal region that contains four GoLoco (GL) motifs, each capable of binding to the membrane-anchored Gα subunit of heterotrimeric G protein.
View Article and Find Full Text PDFTransmembrane glycoproteins, synthesized at the endoplasmic reticulum (ER), generally reach the Golgi apparatus in COPII-coated vesicles en route to the cell surface. Here, we show that the bona fide nonglycoprotein Nox5, a transmembrane superoxide-producing NADPH oxidase, is transported to the cell surface in a manner resistant to co-expression of Sar1 (H79G), a GTP-fixed mutant of the small GTPase Sar1, which blocks COPII vesicle fission from the ER. In contrast, Sar1 (H79G) effectively inhibits ER-to-Golgi transport of glycoproteins including the Nox5-related oxidase Nox2.
View Article and Find Full Text PDFCorrect cyst morphogenesis of epithelial cells requires apical-basal polarization, which is partly regulated by mitotic spindle orientation, a process dependent on the heterotrimeric G protein subunit Gαi and its binding protein LGN. Here, we show that in three-dimensional culture of mammalian epithelial Madin-Darby canine kidney (MDCK) cells, the Gαi-activating protein Ric-8A is crucial for orientation of the mitotic spindle and formation of normal cysts that comprise a single layer of polarized cells with their apical surfaces lining an inner lumen. Consistent with the involvement of LGN, cystogenesis can be well organized by ADP-ribosylated Gαi, retaining the ability to interact with LGN, but not by the interaction-defective mutant protein Gαi2 (N150I).
View Article and Find Full Text PDFThe heterotrimeric G protein subunit Gαi can be activated by G protein-coupled receptors and the cytosolic protein Ric-8A, the latter of which is also known to prevent ubiquitin-dependent degradation of Gαi. Here we show that the amounts of the three Gαi-related proteins Gαi1, Gαi2, and Gαi3, but not that of Gαq, are rapidly decreased by cell treatment with pertussis toxin (PTX). The decrease appears to be due to ADP-ribosylation of Gαi, because PTX treatment does not affect the amount of a mutant Gαi2 carrying alanine substitution for Cys352, the residue that is ADP-ribosylated by the toxin.
View Article and Find Full Text PDFThe cytosolic protein Ric-8A acts as a guanine nucleotide exchange factor for Gα subunits of the Gi, Gq, and G12/13 classes of heterotrimeric G protein in vitro, and is also known to increase the amounts of these Gα proteins in vivo. The mechanism whereby Ric-8 regulates Gα content, however, has not been fully understood. Here we show that Ric-8 Astabilizes Gαi2 and Gαq by preventing their ubiquitination.
View Article and Find Full Text PDF