Background: Nuclear mitotic apparatus protein 1 (NuMA1) is a cell cycle protein and upregulated in breast cancer. However, the role of NuMA1 in TNBC and its regulation in heterogenous populations remains elusive.
Methods: We performed CRISPR mediated deletion of NuMA1 in mouse TNBC cells, BF3M.
Autophagy is a conserved cellular process, and its dysfunction is implicated in cancer and other diseases. Here, we employ an in vivo CRISPR screen targeting genes implicated in the regulation of autophagy to identify the Nsfl1c gene encoding p47 as a suppressor of human epidermal growth factor receptor 2 (HER2)+ breast cancer metastasis. p47 ablation specifically increases metastasis without promoting primary mammary tumor growth.
View Article and Find Full Text PDFMost breast cancers do not respond to immune checkpoint inhibitors and there is an urgent need to identify novel sensitization strategies. Herein, we uncovered that activation of the TBK-IFN pathway that is mediated by the TBK1 adapter protein AZI2 is a potent strategy for this purpose. Our initial observations showed that RB1CC1 depletion leads to accumulation of AZI2, in puncta along with selective macroautophagy/autophagy cargo receptors, which are both required for TBK1 activation.
View Article and Find Full Text PDFIt is a major challenge to treat metastasis due to the presence of heterogenous BCSCs. Therefore, it is important to identify new molecular targets and their underlying molecular mechanisms in various BCSCs to improve treatment of breast cancer metastasis. Here, we performed RNA sequencing on two distinct co-existing BCSC populations, ALDH and CD29 CD61 from PyMT mammary tumor cells and detected upregulation of biglycan (BGN) in these BCSCs.
View Article and Find Full Text PDFBackground: Autophagy is a highly conserved process for maintaining cellular homeostasis. Upregulation of autophagy promotes metastasis by promoting the cancer stem cell state while also stimulating tumor cell migration and invasion. We hypothesized that autophagy upregulation would be critical for cancer stem cell maintenance as well as cellular migration and invasion in thyroid cancer.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
November 2021
Breast cancer stem cells (CSCs) are distinct CD44-subpopulations that are involved in metastasis and chemoresistance. However, the underlying molecular mechanism of CD44 in breast CSCs-mediated tumorigenesis remains elusive. We observed high CD44 expression in advanced-stage clinical breast tumor samples.
View Article and Find Full Text PDFBackground: Discovery of small molecules that inhibit tubulin polymerization is an attractive strategy for the development of new and improved anti-proliferative agents.
Objective: A series of novel 2-sulfonyl-1,1-diarylethenes were designed towards this end keeping in view the favorable chemical and pharmacological virtues of unsaturated sulfones.
Methods: Rapid, convenient and efficient two-step assembly of the designed molecules was achieved by the vicinal iodo-sulfonylation-Suzuki coupling sequence.
Background & Objective: Epidermal growth factor receptor (EGFR) signaling pathway is one of the promising and well-established targets for anticancer therapy. The objective of the present study was to identify new EGFR inhibitors using ligand and structure-based drug designing methods, followed by a synthesis of selected inhibitors and evaluation of their activity.
Methods: A series of C-7-hydroxyproton substituted chrysin derivatives were virtually drawn to generate a small compound library that was screened using 3D QSAR model created from forty-two known EGFR tyrosine kinase inhibitors.
Glutathione S-transferase omega 1 (GSTO1) contributes to the inactivation of a wide range of drug compounds via conjugation to glutathione during phase reactions. Chemotherapy-induced GSTO1 expression in breast cancer cells leads to chemoresistance and promotes metastasis. In search of novel GSTO1 inhibitors, we identified S2E, a thia-Michael adduct of sulfonamide chalcone with low LC (3.
View Article and Find Full Text PDFThe total synthesis of highly potent and scarcely available marine natural product (-)-jahanyne was attempted resulting in a solution-phase synthesis of pruned versions with comparable activity. A simple and facile synthetic route was employed for the preparation of pruned congeners and would be scalable. The lipophilic tail of the natural product was synthesized from -(+)-citronellol, utilizing easily available chemicals.
View Article and Find Full Text PDFApoptotic hepatocytes release factors that activate hepatic stellate cells (HSCs), thereby inducing hepatic fibrosis. In the present study, in vivo and in vitro injury models were established using acetaminophen, ethanol, carbon tetrachloride, or thioacetamide. Histology of hepatotoxicant-induced diseased hepatic tissue correlated with differential expression of fibrosis-related genes.
View Article and Find Full Text PDFThe recurrence of breast cancer in patients is a persistent challenge to the medical fraternity. Breast tumor contains a small population of cells with high tumor initiating and metastatic potential, known as cancer stem cells (CSCs), which are resistant to existing chemotherapeutics. CSCs contribute to the aggressiveness of triple negative breast cancers (TNBCs), thereby necessitating the identification of molecular targets on breast CSCs.
View Article and Find Full Text PDFIn the present study we synthesized lignin-tetra ethoxysilane (TEOS) nanocomposite and characterized it using UV-spectroscopy, Fourier Transform Infra-red spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Field Emission-Scanning Electron Microscopy (FE-SEM) and Scanning Electron Microscopy (SEM). XRD spectra and SEM micrographs confirmed a relatively high degree of crystallinity (peaks located at lower angle, 2θ=12° and 2θ=22.0°) and porous nature of nanocomposite.
View Article and Find Full Text PDF