Publications by authors named "Kanakaraj Rajkumar"

Herein, a generalized version of the entropy-ruled charge and energy transport mechanism for organic solids and biomolecular aggregates is presented. The effects of thermal disorder and electric field on electronic transport in molecular solids have been quantified by entropy, which eventually varies with respect to the typical disorder (static or dynamic). Based on our previous differential entropy ( )-driven charge transport method, we explore the nonsteady carrier energy flux principle for soft matter systems from small organic solids to macrobiomolecular aggregates.

View Article and Find Full Text PDF

We demonstrate controlled fabrication of porous Si (PS) and vertically aligned silicon nanowires array starting from bulk silicon wafer by simple chemical etching method, and the underlying mechanism of nanostructure formation is presented. Silicon-oxidation rate and the electron-scavenging rate from metal catalysis play a vital role in determining the morphology of Si nanostructures. The size of Ag catalyst is found to influence the Si oxidation rate.

View Article and Find Full Text PDF

A simple one step galvanic displacement method which involves dipping of the silicon substrate in the AgNO3/HF solution and using it for SERS application without any further process is demonstrated. The size and shape of the Ag nanoparticles changes as the deposition time is increased. Initially the shape of the particles was nearly spherical and as it grows, becomes oblong and then coalesce to form a discontinuous film with vertically grown hierarchical Ag nanostructures.

View Article and Find Full Text PDF