Publications by authors named "Kanagaraj Sekar"

This study aims to investigate the comparative binding pattern of TTHA1873 and its mutants (R55A and R138A) with DNA through molecular docking and molecular dynamics (MD) simulations. The docking results suggests that the Wild type (WT-TTHA1873), R55A, R138A and double mutant R55A/R138A having docking scores of -225.80 kcal/mol, -209.

View Article and Find Full Text PDF

Unlabelled: Zika virus (ZIKV) and Dengue virus (DENV) infections cause severe disease in humans and are significant socio-economic burden worldwide. These flavivirus infections are difficult to diagnose serologically due to antigenic overlap. The phylogenetic analysis shows that ZIKV clusters with DENVs at a higher node of the phylogenetic tree with significant genomic and structural similarity.

View Article and Find Full Text PDF

Studying the relationship between sequences and their corresponding three-dimensional structure assists structural biologists in solving the protein-folding problem. Despite several experimental and in-silico approaches, still understanding or decoding the three-dimensional structures from the sequence remains a mystery. In such cases, the accuracy of the structure prediction plays an indispensable role.

View Article and Find Full Text PDF
Article Synopsis
  • - The insulin superfamily proteins (ISPs) evolved from a common ancestor, leading to insulin, IGFs, and relaxin, which have different functions but similar structures due to conserved disulphide bridges.
  • - A comprehensive analysis of 427 sequences reveals that IGFs show over 90% sequence conservation, suggesting their interactions with multiple partners limit sequence diversity.
  • - The study also updates the receptor-binding motifs for relaxin, identifies a possible non-canonical C-peptide cleavage site in some insulin sequences, and proposes insulin mutants for therapeutic use based on structural modifications seen in related proteins.
View Article and Find Full Text PDF

Protein dynamics linked to numerous biomolecular functions, such as ligand binding, allosteric regulation, and catalysis, must be better understood at the atomic level. Reactive atoms of key residues drive a repertoire of biomolecular functions by flipping between alternate conformations or conformational substates, seldom found in protein structures. Probing such sparsely sampled alternate conformations would provide mechanistic insight into many biological functions.

View Article and Find Full Text PDF

In recent years, several experimental evidences suggest that amino acid repeats are closely linked to many disease conditions, as they have a significant role in evolution of disordered regions of the polypeptide segments. Even though many algorithms and databases were developed for such analysis, each algorithm has some caveats, like limitation on the number of amino acids within the repeat patterns and number of query protein sequences. To this end, in the present work, a new method called the internal sequence repeats across multiple protein sequences (ISRMPS) is proposed for the first time to identify identical repeats across multiple protein sequences.

View Article and Find Full Text PDF

To regulate biological activity in humans, the Notch signaling pathway (NSP) plays an essential role in a wide array of cellular development and differentiation process. In recent years, many studies have reported that aberrant activation of Notch is associated with the tumor process; but no appropriate database exists to fill this significant gap. To address this, we created a pioneering database NCSp, which is open access and comprises intercommunicating pathways and related protein mutations.

View Article and Find Full Text PDF

For years now, cancer treatments have entailed tried-and-true methods. Yet, oncologists and clinicians recommend a series of surgeries, chemotherapy, and radiation therapy. Yet, even amidst these treatments, the number of deaths due to cancer increases at an alarming rate.

View Article and Find Full Text PDF

Background: Crohn's disease (CD) is a chronic idiopathic inflammatory bowel disease affecting the entire gastrointestinal tract from the mouth to the anus. These patients often experience a period of symptomatic relapse and remission. A 20 - 30% symptomatic recurrence rate is reported in the first year after surgery, with a 10% increase each subsequent year.

View Article and Find Full Text PDF

The Dengue virus M protein is a 75 amino acid polypeptide with two helical transmembranes (TM). The TM domain oligomerizes to form an ion channel, facilitating viral release from the host cells. The M protein has a critical role in the virus entry and life cycle, making it a potent drug target.

View Article and Find Full Text PDF

Thermus thermophilus is an extremely thermophilic organism that thrives at a temperature of 65°C. T. thermophilus genome has ~2218 genes, out of which 66% (1482 genes) have been annotated, and the remaining 34% (736 genes) are assigned as hypothetical proteins.

View Article and Find Full Text PDF

The zymogen protease Plasminogen (Plg) and its active form plasmin (Plm) carry out important functions in the blood clot disintegration (breakdown of fibrin fibers) process. Inhibition of plasmin effectively reduces fibrinolysis to circumvent heavy bleeding. Currently, available Plm inhibitor tranexamic acid (TXA) used for treating severe hemorrhages is associated with an increased incidence of seizures which in turn were traced to gamma-aminobutyric acid antagonistic activity (GABAa) in addition to having multiple side effects.

View Article and Find Full Text PDF
Article Synopsis
  • Syringic acid (SA) is an effective cancer inhibitor, but its low bioavailability and instability limit its potential, leading to the development of a new analog called SA10.
  • In experiments with the K562 cell line, SA10 demonstrated a stronger anticancer effect (IC50 = 50.40 μg/mL) compared to SA (IC50 = 96.92 μg/mL), and showed a two-fold increase in inhibiting NFkB and Bcl-2.
  • Molecular docking studies revealed that SA10 binds more effectively to the NFkB protein than SA, suggesting that it could be a promising therapeutic candidate for cancer treatment due to its improved NFkB inhibition.
View Article and Find Full Text PDF
Article Synopsis
  • This study focuses on understanding prion diseases, which are caused by the misfolding and aggregation of the cellular prion protein PrP, particularly regarding the V210I genetic mutation.
  • The V210I mutation leads to significant structural changes in the β1-α1-β2 subdomain of PrP, including the unfolding of helix α1 and elongation of the β-sheet, which are critical early events in PrP misfolding.
  • These structural alterations contribute to the formation of unstable folding intermediates that promote increased aggregation and misfolding of PrP, linking the molecular changes directly to prion disease mechanisms.
View Article and Find Full Text PDF

Unlabelled: COVID-19, the current global pandemic has caused immense damage to human lives and the global economy. It is instigated by the SARS-CoV-2 virus and there is an immediate need for the identification of effective drugs against this deadly virus. SARS-CoV-2 genome codes for four structural proteins, sixteen non-structural proteins (NSPs) and several accessory proteins for its survival inside the host cells.

View Article and Find Full Text PDF

Our present work studies the structure-based pharmacophore modeling and designing inhibitor against Gal3 receptor through molecular dynamics (MD) simulations extensively. Pharmacophore models play a key role in computer-aided drug discovery like in the case of virtual screening of chemical databases, drug design and lead optimization. Structure-based methods for developing pharmacophore models are important, and there have been a number of studies combining such methods with the use of MD simulations to model protein's flexibility.

View Article and Find Full Text PDF

RecFOR pathway is the principal repair pathway for double strand break and single strand gap repair in Thermus thermophilus. RecF and RecR exist as monomer and dimer in solution, interestingly; they undergo condition-dependent dimerization and tetramerization, respectively during the DNA break repair. However, their importance in protein-protein and protein-DNA interactions remains elusive.

View Article and Find Full Text PDF

Over the past decade, the available crystal structures have almost doubled in Protein Data Bank (PDB) providing the research community with a series of similar crystal structures to choose from for future docking studies. With the steady growth in the number of high-resolution three-dimensional protein structures, ligand docking-based virtual screening of chemical libraries to a receptor plays a critical role in the drug discovery process by identifying new drug candidates. Thus, identifying potential candidates among all the available structures in a database for docking studies is of utmost importance.

View Article and Find Full Text PDF

Understanding the dual inhibition mechanism of food derivative peptides targeting the enzymes (Renin and Angiotensin Converting enzyme) in the Renin Angiotensin System. Two peptides RALP and WYT were reported to possess antihypertensive activity targeting both renin and ACE, and we have used molecular docking and molecular dynamics simulation, in order to understand the underlying mechanism. The selected peptides (RALP and WYT) from the series of peptides reported were docked to renin and ACE and two binding modes were selected based on the binding energy, interaction pattern and clusters of docking simulation.

View Article and Find Full Text PDF

State-of-the-art ultra-sensitive blood glucose-monitoring biosensors, based on glucose oxidase (GOx) covalently linked to a single layer graphene (SLG), will be a valuable next generation diagnostic tool for personal glycemic level management. We report here our observations of sensor matrix structure obtained using a multi-physics approach towards analysis of small-angle neutron scattering (SANS) on graphene-based biosensor functionalized with GOx under different pH conditions for various hierarchical GOx assemblies within SLG. We developed a methodology to separately extract the average shape of GOx molecules within the hierarchical assemblies.

View Article and Find Full Text PDF

Several studies on enzyme catalysis have pointed out that the product release event could be a rate limiting step. In this study, we have compared the release event of two products, Adenosine di-phosphate (ADP) and Thymidine di-phosphate (TDP) from the active-site of human and Thermus thermophilus thymidine mono-phosphate kinase (TMPK), referred to as hTMPK and ttTMPK, respectively. TMPK catalyses the conversion of Thymidine mono-phosphate (TMP) to TDP using ATP as phosphoryl donor in the presence of Mg ion.

View Article and Find Full Text PDF

Thymidylate kinase is an important enzyme in DNA synthesis. It catalyzes the conversion of thymidine monophosphate to thymidine diphosphate, with ATP as the preferred phosphoryl donor, in the presence of Mg. In this study, the dynamics of the active site and the communication paths between the substrates, ATP and TMP, are reported for thymidylate kinase from Thermus thermophilus.

View Article and Find Full Text PDF

To obtain selective and potent opioid receptor ligands, we synthesized dehydro derivatives of alvimopan and found compound (28f), a selective but modest affinity MOR antagonist weaker than alvimopan (1). We replaced the arylpiperidine unit by an arylpiperazine to obtain the 1-(α-carboxycinnamyl)-4-arylpiperazines like 13h, which to our surprise had no MOR or DOR activity but was a KOR agonist with moderate affinity. In contrast, literature examples of arylpiperazines 4 and 5 were reported to be pan opioid receptor antagonists, while 6 was a MOR agonist.

View Article and Find Full Text PDF

Unlabelled: Thymidylate kinase (TMK) is a key enzyme which plays an important role in DNA synthesis. It belongs to the family of nucleoside monophosphate kinases, several of which undergo structure-encoded conformational changes to perform their function. However, the absence of three-dimensional structures for all the different reaction intermediates of a single TMK homolog hinders a clear understanding of its functional mechanism.

View Article and Find Full Text PDF

In the recent decades, essential steps of protein structure determination such as phasing by multiple isomorphous replacement and multi wave length anomalous dispersion, molecular replacement, refinement of the structure determined and its validation have been fully automated. Several computer program suites that execute all these steps as a pipeline operation have been made available. In spite of these great advances, determination of a protein structure may turn out to be a challenging task for a variety of reasons.

View Article and Find Full Text PDF