Publications by authors named "Kanagaraj Karthik"

Article Synopsis
  • A large radiological event may hinder quick sample collection, making rapid bioassays necessary for individual dose assessment days after exposure.
  • This study tested a biomarker panel of specific blood proteins and cell counts in irradiated mice to classify exposure and estimate radiation doses within a week.
  • The results indicated high accuracy in distinguishing exposure levels and reconstructing doses, suggesting that this biomarker assay could effectively assess radiation exposure in individuals.
View Article and Find Full Text PDF

There are currently no available FDA-cleared biodosimetry tools for rapid and accurate assessment of absorbed radiation dose following a radiation/nuclear incident. Previously we developed a protein biomarker-based FAST-DOSE bioassay system for biodosimetry. The aim of this study was to integrate an ELISA platform with two high-performing FAST-DOSE biomarkers, BAX and DDB2, and to construct machine learning models that employ a multiparametric biomarker strategy for enhancing the accuracy of exposure classification and radiation dose prediction.

View Article and Find Full Text PDF

The cytokinesis-block micronucleus (CBMN) assay is an established method for assessing chromosome damage in human peripheral blood lymphocytes resulting from exposure to genotoxic agents such as ionizing radiation. The objective of this study was to measure cytogenetic DNA damage and hematology parameters in vivo based on MN frequency in peripheral blood lymphocytes (PBLs) from adult and pediatric leukemia patients undergoing hematopoietic stem cell transplantation preceded by total body irradiation (TBI) as part of the conditioning regimen. CBMN assay cultures were prepared from fresh blood samples collected before and at 4 and 24 h after the start of TBI, corresponding to doses of 1.

View Article and Find Full Text PDF

Even though the medical uses of ionizing radiation are well-acknowledged globally as vital tools for the improvement of human health, they also symbolize the major man-made sources of radiation exposure to the population. Estimation of absorbed dose and biological changes after radiation-based imaging might help to better understand the effects of low dose radiation. Because of this, we measured the Entrance Surface Dose (ESD) at different anatomical locations using Lithium tetraborate doped with manganese (LiBO: Mn), recorded Dose Length Product (DLP) and Dose Area Product (DAP), analyzed Chromosomal Aberration (CA), Micronucleus (MN), gamma-H2AX (γ-H2AX), and p53 proteins in the blood lymphocytes of patients (n = 267) underwent Computed Tomography (CT), Positron Emission Tomography-CT (PET/CT), and interventional procedures and healthy volunteers (n = 19).

View Article and Find Full Text PDF

Purpose: In the modern era of radiotherapy, use of conventional radiation modalities (based on γ-rays) is being replaced by high-energy linear accelerator-based X-rays. As a result of mishandling of equipment or mechanical errors, health workers can be exposed to these high-energy X-rays. Especially in the absence of personnel monitoring devices, biodosimetry with a lower energy X-ray calibration curve may not provide an acceptable dose estimate.

View Article and Find Full Text PDF

Occupational heat stress apart from adverse heat-related health consequences also induces DNA damage in workers exposed to high working temperatures. We investigated the association between chronic heat exposures and Micronuclei (MN) frequency in lymphocytes of 120 workers employed in the steel industry. There was a significant increase in the MN-frequency in exposed workers compared to the unexposed workers .

View Article and Find Full Text PDF

Positron Emission Tomography/Computed Tomography (PET/CT), a combination of PET and CT, is used in tumor staging, therapy planning, and treatment response monitoring. During PET imaging, patients receive low doses of radiation, which can induce an adaptive response and necessitate higher doses for therapeutic efficacy. Higher doses may augment toxicity to normal cells.

View Article and Find Full Text PDF

In vitro human lymphocyte culture methodology is well established yet certain confounding factors such as age, medical history as well as individual's blood type may potentially modulate in vitro proliferation response. These factors have to be carefully evaluated to release reliable test report in routine cytogenetic evaluation for various genetic conditions, radiation biodosimetry, etc. With this objective, the current study was focused on analyzing the proliferation response of lymphocytes drawn from 90 individuals (21-29 years) with different blood types.

View Article and Find Full Text PDF

The ionizing radiation received by patients and health workers due to radiological imaging may increase the risks of radiation effects, such as cancer and cataracts. We have investigated the dose received by specific areas around the head and related this to DNA damage in the blood lymphocytes of subjects exposed to interventional imaging. The entrance surface doses (ESD) to the forehead, neck, and shoulder were measured with a thermoluminescence dosimeter (CaSO disc or polycrystalline powder of lithium tetraborate doped with Mn) and compared with that of dose area product (DAP).

View Article and Find Full Text PDF

The radiation is considered as a double edged sword, as its beneficial and detrimental effects have been demonstrated. The potential benefits are being exploited to its maximum by adopting safe handling of radionuclide stipulated by the regulatory agencies. While the occupational workers are monitored by personnel monitoring devices, for general publics, it is not a regular practice.

View Article and Find Full Text PDF

Measurement of γ-H2AX protein changes in the peripheral blood lymphocytes (PBL) of individuals exposed to ionizing radiation is a simple, sensitive, and rapid assay for radiation triage and early marker of dose estimation. The qualitative and quantitative measurements of the protein changes were examined using flow cytometry and microscopy. Whole blood and isolated lymphocytes were exposed in vitro between 0.

View Article and Find Full Text PDF

Purpose: Computed tomography (CT) is a frequently used imaging modality that contributes to a tenfold increase in radiation exposure to the public when compared to other medical imaging modalities. The use of radiation for therapeutic need is always rationalized on the basis of risk versus benefit thereby increasing concerns on the dose received by patients undergoing CT imaging. Therefore, it was of interest to us to investigate the effects of low dose and low dose-rate X-irradiation in patients who underwent CT imaging by recording the doses received by the eye, forehead and thyroid, and to study the levels of damages in the lymphocytes in vivo.

View Article and Find Full Text PDF