Publications by authors named "Kanae Ito"

The co-assembly of polyelectrolytes (PE) with proteins offers a promising approach for designing complex structures with customizable morphologies, charge distribution, and stability for targeted cargo delivery. However, the complexity of protein structure limits our ability to predict the properties of the formed nanoparticles, and our goal is to identify the key triggers of the morphological transition in protein/PE complexes and evaluate their ability to encapsulate multivalent ionic drugs. A positively charged PE can assemble with a protein at pH above isoelectric point due to the electrostatic attraction and disassemble at pH below isoelectric point due to the repulsion.

View Article and Find Full Text PDF

Unlabelled: A 74-year-old woman with a history of mitral valve prolapse with mitral regurgitation was transferred to our hospital due to infective endocarditis. Blood culture revealed which is known as a nutritional variant streptococcus. Transesophageal echocardiography revealed posterior leaflet (P2) prolapse due to rupture of tendon chordae with severe mitral regurgitation and vegetation on posterior leaflet.

View Article and Find Full Text PDF
Article Synopsis
  • * Adding 15 mol % of a difunctional chain extender reduces the cross-link density by half, increasing the free amine content by 80%, which leads to greater swelling and a 30% increase in salt passage but surprisingly a 30% decrease in water permeance.
  • * The observed decrease in water permeance is explained by slower water diffusion in the less cross-linked network, indicating stronger interactions between water and the increased free amine groups, demonstrating complex behavior in water mobility at different scales.
View Article and Find Full Text PDF

Modern design of common adhesives, composites and polymeric parts makes use of polymer glasses that are stiff enough to maintain their shape under a high stress while still having a ductile behavior after the yield point. Typically, material compositions are tuned with co-monomers, polymer blends, plasticizers, or other additives to arrive at a tradeoff between the elastic modulus and toughness. In contrast, strong changes to the mechanics of a glass are possible by changing only the molecular packing during vitrification or even deep in the glassy state.

View Article and Find Full Text PDF

We performed HO and DO double-contrast neutron reflectivity measurements on ∼25 nm thick Nafion thin films on hydrophilic and hydrophobic carbon in water and 80% relative humidity vapor to investigate the depth profile of the water and Nafion distribution. We found a dense Nafion layer at the air or water interface regardless of the carbon hydrophilicity. On the other hand, a water-rich Nafion dense layer was observed at the carbon interface only for hydrophilic carbon.

View Article and Find Full Text PDF

The single particle dynamics of water confined within two ordered mesoporous carbon matrices was investigated in the temperature range from 290 K to 170 K by quasielastic neutron scattering using three high resolution neutron spectrometers. Thus, it was possible to investigate the mobility of water confined in model hydrophobic cavities at the nanoscale. Models developed for the nanoscale dynamics of supercooled water and water confined within hydrophilic matrices were able to describe the collected data but remarkable differences with analogous silica confined matrices were observed in these carbon samples.

View Article and Find Full Text PDF

Background: TAFRO syndrome, which was first reported in 2010 in Japan, is a relatively rare disease characterized by thrombocytopenia, anasarca, fever, renal impairment, reticulin fibrosis, and organomegaly. Although this disease is considered similar to multicentric Castleman disease, some of the clinical features, such as thrombocytopenia, are different from typical cases of multicentric Castleman disease. In addition, the etiology of TAFRO syndrome remains unknown and controversial.

View Article and Find Full Text PDF

Hypothesis: The mechanical properties of cement pastes depend strongly on their porosities. In a saturated paste, the porosity links to the free water volume after hydration. Structural water, constrained water, and free water have different dynamical behavior.

View Article and Find Full Text PDF

The boson peak in deeply cooled water confined in nanopores is studied to examine the liquid-liquid transition (LLT). Below ∼180  K, the boson peaks at pressures P higher than ∼3.5  kbar are evidently distinct from those at low pressures by higher mean frequencies and lower heights.

View Article and Find Full Text PDF

With quasi-elastic neutron scattering, we study the single-particle dynamics of the water confined in a hydrophilic silica material, MCM-41, at 4 kbar. A dynamic crossover phenomenon is observed at 219 K. We compare this dynamic crossover with the one observed at ambient pressure and find that (a) above the crossover temperature, the temperature dependence of the characteristic relaxation time at ambient pressure exhibits a more evident super-Arrhenius behavior than that at 4 kbar.

View Article and Find Full Text PDF

Using neutron diffraction technique, we measure the average density of the heavy water confined in a nanoporous silica matrix, MCM-41, over the pressure-temperature plane. The result suggests the existence of a line of liquid-liquid phase transition with its end point at 1.29 ± 0.

View Article and Find Full Text PDF

Self-incompatibility in the Brassicaceae is controlled by multiple haplotypes encoding the pollen ligand (S-locus protein 11, SP11, also known as S-locus cysteine-rich protein, SCR) and its stigmatic receptor (S-receptor kinase, SRK). A haplotype-specific interaction between SP11/SCR and SRK triggers the self-incompatibility response that leads to self-pollen rejection, but the signalling pathway remains largely unknown. Here we show that Ca(2+) influx into stigma papilla cells mediates self-incompatibility signalling.

View Article and Find Full Text PDF

The thermal behavior and structure of water confined in Sephadex G15 gel were investigated over a temperature range of 298-173 K at hydration levels, h (= mass of water/mass of dry G15 gel), of 0.24-1.38 by differential scanning calorimetry (DSC) and an X-ray diffraction (XRD) method, respectively.

View Article and Find Full Text PDF

The behavior of hydrated Ag+ ions in a 1.5 mol dm(-3) AgNO3 aqueous solution confined in mesoporous silica MCM-41 with different pore sizes was characterized by synchrotron X-ray absorption spectroscopy. The hydrated Ag+ ions are stabilized in 4-fold coordination down to 195 K in the pores (21 Å in diameter), whereas in the larger pores (28 Å) the hydrated Ag+ ions are reduced to Ag0 to form nano clusters with the Ag-Ag interactions of 2.

View Article and Find Full Text PDF

The LOSS OF APOMEIOSIS (LOA) locus is one of two dominant loci known to control apomixis in the eudicot Hieracium praealtum. LOA stimulates the differentiation of somatic aposporous initial cells after the initiation of meiosis in ovules. Aposporous initial cells undergo nuclear proliferation close to sexual megaspores, forming unreduced aposporous embryo sacs, and the sexual program ceases.

View Article and Find Full Text PDF

Asexual seed formation, or apomixis, in the Hieracium subgenus Pilosella is controlled by two dominant independent genetic loci, LOSS OF APOMEIOSIS (LOA) and LOSS OF PARTHENOGENESIS (LOP). We examined apomixis mutants that had lost function in one or both loci to establish their developmental roles during seed formation. In apomicts, sexual reproduction is initiated first.

View Article and Find Full Text PDF