Publications by authors named "Kanade Tatsumi"

The phenylpropanoid pathway is one of the plant metabolic pathways most prominently linked to the transition to terrestrial life, but its evolution and early functions remain elusive. Here, we show that activity of the t-cinnamic acid 4-hydroxylase (C4H), the first plant-specific step in the pathway, emerged concomitantly with the CYP73 gene family in a common ancestor of embryophytes. Through structural studies, we identify conserved CYP73 residues, including a crucial arginine, that have supported C4H activity since the early stages of its evolution.

View Article and Find Full Text PDF

4-Coumaroyl-CoA ligase (4CL) is a key enzyme in the phenylpropanoid pathway, which is involved in the biosynthesis of various specialized metabolites such as flavonoids, coumarins, lignans, and lignin. Plants have several 4CLs showing divergence in sequence: Class I 4CLs involved in lignin metabolism, Class II 4CLs associated with flavonoid metabolism, and atypical 4CLs and 4CL-like proteins of unknown function. Shikonin, a Boraginaceae-specific specialized metabolite in red gromwell (Lithospermum erythrorhizon), is biosynthesized from p-hydroxybenzoic acid, and the involvement of 4CL in its biosynthesis has long been debated.

View Article and Find Full Text PDF
Article Synopsis
  • Shikonin is a valuable red pigment from plants, primarily produced through the action of an enzyme called para-hydroxybenzoic acid geranyltransferase (PGT), which plays a crucial role in its biosynthesis.
  • Researchers focused on the PGTs from the medicinal plant Arnebia euchroma, which produces more shikonin than the well-studied Lithospermum erythrorhizon.
  • They discovered that different isoforms of the enzyme, particularly AePGT6, had variations in activity; manipulating these isoforms enhanced enzyme performance, leading to a record production of a shikonin precursor, 3-geranyl-4-hydroxybenzoate acid.
View Article and Find Full Text PDF

Plants produce a large variety of lipophilic metabolites, many of which are secreted by cells and accumulated in apoplasts. These compounds often play a role to protect plants from environmental stresses. However, little is known about how these lipophilic compounds are secreted into apoplastic spaces.

View Article and Find Full Text PDF

Plants produce ∼300 aromatic compounds enzymatically linked to prenyl side chains via C-O bonds. These -prenylated aromatic compounds have been found in taxonomically distant plant taxa, with some of them being beneficial or detrimental to human health. Although their -prenyl moieties often play crucial roles in the biological activities of these compounds, no plant gene encoding an aromatic -prenyltransferase (-PT) has been isolated to date.

View Article and Find Full Text PDF

The plant phenylpropanoid pathway generates a major class of specialized metabolites and precursors of essential extracellular polymers that initially appeared upon plant terrestrialization. Despite its evolutionary significance, little is known about the complexity and function of this major metabolic pathway in extant bryophytes, which represent the non-vascular stage of embryophyte evolution. Here, we report that the HYDROXYCINNAMOYL-CoA:SHIKIMATE HYDROXYCINNAMOYL TRANSFERASE (HCT) gene, which plays a critical function in the phenylpropanoid pathway during seed plant development, is functionally conserved in Physcomitrium patens (Physcomitrella), in the moss lineage of bryophytes.

View Article and Find Full Text PDF

, a medicinal plant growing in Asian countries, produces shikonin derivatives that are lipophilic secondary metabolites. These red naphthoquinone pigments are traditionally used as a natural drug and a dye in East Asia. In intact plants, shikonin derivatives are produced in the root epidermal cells and secreted into extracellular spaces.

View Article and Find Full Text PDF

Geranyl diphosphate (GPP) is the direct precursor of all monoterpenoids and is the prenyl source of many meroterpenoids, such as geranylated coumarins. GPP synthase (GPPS) localized in plastids is responsible for providing the substrate for monoterpene synthases and prenyltransferases for synthesis of aromatic substances that are also present in plastids, but GPPS activity in localizes to the cytosol, in which GPP is utilized for the biosynthesis of naphthoquinone pigments, which are shikonin derivatives. This study describes the identification of the cytosol-localized GPPS gene, , through EST- and homology-based approaches followed by functional analyses.

View Article and Find Full Text PDF

Plants produce various prenylated phenolic metabolites, including flavonoids, phloroglucinols, and coumarins, many of which have multiple prenyl moieties and display various biological activities. Prenylated phenylpropanes, such as artepillin C (3,5-diprenyl--coumaric acid), exhibit a broad range of pharmaceutical effects. To date, however, no prenyltransferases (PTs) involved in the biosynthesis of phenylpropanes and no plant enzymes that introduce multiple prenyl residues to native substrates with different regio-specificities have been identified.

View Article and Find Full Text PDF

Furanocoumarins (FCs) are plant-specialized metabolites with potent allelochemical properties. The distribution of FCs is scattered with a chemotaxonomical tendency towards four distant families with highly similar FC pathways. The mechanism by which this pathway emerged and spread in plants has not been elucidated.

View Article and Find Full Text PDF

Shikonin derivatives are specialized lipophilic metabolites, secreted in abundant amounts from the root epidermal cells of Lithospermum erythrorhizon. Because they have anti-microbial activities, these compounds, which are derivatives of red naphthoquinone, are thought to serve as a chemical barrier for plant roots. The mechanism by which they are secreted from cells is, however, largely unknown.

View Article and Find Full Text PDF