Superatoms (SAs) with specific compositions have the potential to significantly advance the field of nanomaterials science, leading to next-generation nanoscale functionalities. In this study, we fabricated assembled layers with tantalum metal-atom encapsulating silicon cage (Ta@Si) SAs on an organic C substrate through deposition, and we characterized their electronic and optical properties by photoelectron spectroscopy and microscopy. The alkaline nature of Ta@Si SAs reveals their electronic behaviors, such as charge transfer and electromagnetic near-field sensing, through two-photon photoemission (2PPE) spectroscopy and microscopy with a femtosecond laser.
View Article and Find Full Text PDFVisualization of surface plasmon polariton (SPP) propagation at dielectric/metal interfaces is indispensable in providing opportunities for the precise designing and controlling of the functionalities of future plasmonic nanodevices. Here, we report the visualization of SPPs propagating along the buried organic/metal interface of fullerene (C)/Au(111), through dual-colored two-photon photoemission electron microscopy (2P-PEEM) which precisely visualizes the SPP propagation of plasmonic metal nanostructures. Although SPPs excited by near-infrared photons at the few monolayer C/Au(111) interface are clearly visualized as interference beat patterns between the SPPs and incident light, faithfully reflecting SPP properties modulated by the overlayer, photoemission signals are suppressed for thicker C films, due to less valence electrons participating in 2P-photoemission processes.
View Article and Find Full Text PDFIn this study, we have employed dual-color photoelectron emission microscopy (2P-PEEM) to visualize surface plasmon polaritons (SPPs) propagating along a chemically modified organic/metal interface of alkanethiolate self-assembled monolayers (Cn-SAMs; n is the number of alkyl carbon atoms) formed on Au(111). In dual-color 2P-PEEM, near-infrared photons around 900 nm generate SPPs at the Cn-SAMs/Au(111) interface, which interfere with the remaining light field. The resulting surface polarization beats are imaged as local distributions of 2P-photoelectrons probed by ultraviolet photons.
View Article and Find Full Text PDF