Publications by authors named "Kan Yue"

Objective: To evaluate the clinical effect of probiotics combined with Ulinastatin and Somatostatin in the treatment of severe acute pancreatitis.

Methods: A retrospective study was conducted on 160 patients with severe acute pancreatitis treated in the First Affiliated Hospital of Bengbu Medical College from July 2021 to June 2023. There were 78 patients received Ulinastatin and Somatostatin treatment (Control group), and 82 patients received probiotics in addition to Ulinastatin and Somatostatin treatment (Observation group).

View Article and Find Full Text PDF

Background: Previous observational studies have indicated a complex association between gut microbiota (GM) and neuropathic pain (NP). Nonetheless, the precise biological mechanisms underlying this association remain unclear. Therefore, we adopted a Mendelian randomization (MR) approach to investigate the causal relationship between GM and neuropathic pain including post-herpetic neuralgia (PHN), painful diabetic peripheral neuropathy (PDPN), and trigeminal neuralgia (TN), as well as to explore the potential mediation effects of immune cells.

View Article and Find Full Text PDF

Objectives: There are a variety of minimally invasive interventional treatments for trigeminal neuralgia, and the efficacy evaluation is different. The preferred treatment scheme is still controversial. This study aims to investigate the differences in treatment effects between patients with primary trigeminal neuralgia (PTN) treated with percutaneous balloon compression (PBC) for the first intervention and patients with pain recurrence after radiofrequency thermocoagulation (RT) who then received PBC for PTN, and to offer clinicians and patients more scientifically grounded and precise treatment alternatives.

View Article and Find Full Text PDF

Plastic crystals as barocaloric materials exhibit the large entropy change rivalling freon, however, the limited pressure-sensitivity and large hysteresis of phase transition hinder the colossal barocaloric effect accomplished reversibly at low pressure. Here we report reversible colossal barocaloric effect at low pressure in two-dimensional van-der-Waals alkylammonium halides. Via introducing long carbon chains in ammonium halide plastic crystals, two-dimensional structure forms in (CH-(CH))NHX (X: halogen element) with weak interlayer van-der-Waals force, which dictates interlayer expansion as large as 13% and consequently volume change as much as 12% during phase transition.

View Article and Find Full Text PDF

The aim of this study was to explore the efficacy and safety of TGFβ1 siRNA lipid nanoparticles (LNPs) modified with different PEG derivatives (PEG5000 cholesterol, abbreviated as CE; tocopherol polyethylene glycol 1000 succinate, abbreviated as TPGS) in the treatment of paclitaxel-resistant non-small-cell lung cancer. Three kinds of TGFβ1 siRNA LNPs were prepared via microfluidics technology, using different PEG derivatives and dosages (CE1.5, CE2.

View Article and Find Full Text PDF

The ligament, which connects bones at the joints, has both high water content and excellent mechanical properties in living organisms. However, it is still challenging to fabricate fibrous materials that possess high water content and ligament-like mechanical characteristics simultaneously. Herein, the design and preparation of a ligament-mimicking multicomponent fiber is reported through stepwise assembly of polysaccharide, calcium, and dopamine.

View Article and Find Full Text PDF
Article Synopsis
  • - Capacitive pressure sensors that mimic human touch are gaining popularity, with microstructures in the dielectric layer enhancing their sensitivity, but traditional fabrication methods can be overly complex and weaken mechanical properties.
  • - This research presents a new type of dielectric layer made from a strong and stretchy fluorinated elastomer, created through a simple thermal decomposition process, which has a high dielectric constant of 5.8 at 1000 Hz.
  • - The resulting sensors show impressive features, including over 300% stretchability, a pressure sensitivity of 17 MPa, a broad detection range (70 Pa-800 kPa), and quick response times, making them promising for various applications in stretchable ionotronic devices.
View Article and Find Full Text PDF
Article Synopsis
  • High entropy oxides (HEOs) are emerging materials with promising potential in reversible energy storage, showing better capacity and longevity than traditional anodes in lithium-ion batteries (LIBs).
  • The review discusses synthesis methods, key factors affecting their structure and electrochemical performance, emphasizing the role of morphology and properties like pseudocapacitance and oxygen vacancies.
  • It also addresses current challenges in using HEOs as anodes in LIBs and offers insights on how to advance their development.
View Article and Find Full Text PDF

Information transduction soft strain sensors under harsh conditions such as marine, oily liquid, vacuum, and extreme temperatures without excess encapsulation facilitates modern scientific and military exploration. However, most reported soft strain sensors struggle to meet these requirements, especially in complex environments. Herein, a class of fluorine-rich ionogels with tunable ultimate strain, high conductivity, and multi-environment tolerance are designed.

View Article and Find Full Text PDF

The lack of noninvasive imaging and modulation of a large area of the gastrointestinal (GI) tract constrain the diagnosis and treatment of many GI-related diseases. Recent advances use novel mucoadhesive materials to coat a part of the GI tract and then modulate its functions. High mucoadhesion is the key factor of the partial coating, but also the limitation for not spreading and covering the lower GI tract.

View Article and Find Full Text PDF

Although in Nature sequence control is widely adopted to tune the structure and functions of biomacromolecules, it remains challenging and largely unexplored in synthetic macromolecular systems due to the difficulties in a precision synthesis, which impedes the understanding of the structure-property relationship in macromolecular sequence isomerism. Herein, we report the sequence-controlled macromolecular self-assembly enabled by a pair of rationally designed isomeric dendritic rod-like molecules. With an identical chemical formula and molecular topology, the molecular solid angle of the dendron isomers was determined by the sequence of the rod building blocks tethered with side chains of different lengths.

View Article and Find Full Text PDF

Three-dimensional (3D) extrusion bioprinting has emerged as one of the most promising biofabrication technologies for preparing biomimetic tissue-like constructs. The successful construction of cell-laden constructs majorly relies on the development of proper bioinks with excellent printability and cytocompatibility. Bioinks based on gelatin methacryloyl (GelMA) have been widely explored due to the excellent biocompatibility and biodegradability and the presence of the arginine-glycine-aspartic acid (RGD) sequences for cell adhesion.

View Article and Find Full Text PDF

Nuclear factor (NF)-κB plays a pivotal role in the regulation of inflammatory response in macrophages. Berberine (BBR), which is an active constituent isolated from Coptis rhizome, possesses a prominent anti-inflammatory activity. Here we show that BBR changes the global acetylation landscape in LPS-induced protein acetylation of macrophages and reduces the acetylation of NF-κB subunit p65 at site Lys310(p65), leading to the inhibition of NF-κB translocation and transcriptional activity to suppress the expressions of inflammatory factors.

View Article and Find Full Text PDF

Organic synthesis continues to drive a broad range of research advances in chemistry and related sciences. Another clear trend in organic synthesis research is the increasing desire to target improvements in the quality of life of humankind, new materials, and product specificity. Here, a landscape view of organic synthesis research is provided by analysis of the CAS Content Collection.

View Article and Find Full Text PDF

Organic synthesis continues to drive a broad range of research advances in chemistry and related sciences. Another clear trend in organic synthesis research is the increasing desire to target improvements in the quality of life of humankind, new materials, and product specificity. Here, a landscape view of organic synthesis research is provided by analysis of the CAS Content Collection.

View Article and Find Full Text PDF

Implant-associated infection (IAI) caused by pathogens colonizing on the implant surface is a serious issue in the trauma-orthopedic surgery, which often leads to implant failure. The complications of IAI bring a big threat to the clinical practice of implants, accompanied by significant economic cost and long hospitalization time. In this study, we propose an antibiotics-free strategy to address IAI-related challenges by using a biodegradable and cytocompatible hydrogel coating.

View Article and Find Full Text PDF

Background: Ginsenoside Rb1 (GRb1) is capable of regulating lipid and glucose metabolism through its action on adipocytes. However, the beneficial role of GRb1-induced up-regulation of adiponectin in liver steatosis remains unelucidated. Thus, we tested whether GRb1 ameliorates liver steatosis and insulin resistance by promoting the expression of adiponectin.

View Article and Find Full Text PDF

It was reported that spexin as an adipocyte-secreted protein could regulate obesity and insulin resistance. However, the specific metabolic contribution of spexin to fatty liver remains incompletely understood. Herein, we investigated the effects of spexin on hepatosteatosis and explored the underlying molecular mechanisms.

View Article and Find Full Text PDF

The flows of people and material attributed to international tourism exert a major impact on the global environment. Tourism carbon emissions is the main indicator in this context. However, previous studies focused on estimating the emissions of destinations, ignoring the embodied emissions in tourists' origins and other areas.

View Article and Find Full Text PDF

This study reports the exploration of a solvent-free supramolecular templated synthesis strategy toward highly core-cross-linked star-shaped polymers (CSPs). To achieve this, a kind of cross-linkable giant surfactant, based on a functionalized polyhedral oligomeric silsesquioxanes (POSS) head tethered with a diblock copolymer tail containing reactive benzocyclobutene groups, is designed and prepared. By varying the volume fraction of linear block copolymer tail, these giant surfactants can self-assemble into a body-centered cubic (BCC) structure in bulk, in which the supramolecular spheres are composed of a core of POSS cages, a middle shell of crosslinkable poly(4-vinylbenzocyclobutene) (PBCB) blocks, and a corona of inert polystyrene (PS) blocks.

View Article and Find Full Text PDF

Dendritic molecules with a fanlike or conelike conformation are common molecular building blocks to construct supramolecular columnar or spherical phases. Although it is well-accepted that the preferred molecular conformation of dendritic molecules dictates their packing schemes, manipulation of this crucial parameter usually requires significant changes in molecular structures and tedious synthetic efforts. Herein, we report a simple yet highly efficient strategy to tune the molecular conformation of dendritic rodlike molecules by adjusting the length of alkyl side chains tethered to the rods.

View Article and Find Full Text PDF

Aims/introduction: Renal function impairment related to type 2 diabetes (T2DM) presents serious threat to public health. Previous studies suggest that vascular endothelial growth factor-B (VEGF-B) might contribute to renal injury. Therefore, this study investigated the association of serum VEGF-B level with the risk of renal function impairment in T2DM patients.

View Article and Find Full Text PDF

Inspired by the striated structure of skeletal muscle fibers, a polymeric actuator by assembling two symmetric triblock copolymers, namely, polystyrene-b-poly(acrylic acid)-b-polystyrene (SAS) and polystyrene-b-poly(ethylene oxide)-b-polystyrene (SES) is developed. Owing to the microphase separation of the triblock copolymers and hydrogen-bonding complexation of their middle segments, the SAS/SES assembly forms a lamellar structure with alternating vitrified S and hydrogen-bonded A/E association layers. The SAS/SES strip can be actuated and operate in response to environmental pH.

View Article and Find Full Text PDF

Hospital-acquired infections are a serious threat to the recovery of patients. To prevent such infections, an antibacterial coating is an effective method to eliminate bacterial colonization on healthcare-related surfaces. Herein, we report an antibacterial hydrogel composed of silver-containing polyoxometalate (AgPW POM) and carboxymethyl chitosan (CMC).

View Article and Find Full Text PDF

Skeletal muscle is a principal tissue involved in energy expenditure and glucose metabolism. Although the results of our and other studies show that spexin could decrease food intake and obesity, the specific metabolic effect of spexin on glucose metabolism of skeletal muscle is still unclear. The aim of this study is to investigate whether spexin might mitigate obesity-induced insulin resistance in skeletal muscles and to explore its underlying mechanisms.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiono2kv38ldenc41hq3t8lbsua49fa4qrl0): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once