Publications by authors named "Kan Takase"

Multi-photon Fock states have diverse applications such as optical quantum information processing. For the implementation of quantum information processing, Fock states should be generated within the telecommunication wavelength band, particularly in the C-band (1530-1565 nm). This is because mature optical communication technologies can be leveraged for transmission, manipulation, and detection.

View Article and Find Full Text PDF

Quantum information processors benefit from high clock frequencies to fully harness quantum advantages before they are lost to decoherence. All-optical systems offer unique benefits due to their inherent 100-THz carrier frequency, enabling the development of THz-clock frequency processors. However, the bandwidth of quantum light sources and measurement devices has been limited to the MHz range, with nonclassical state generation rates in the kHz range.

View Article and Find Full Text PDF
Article Synopsis
  • Cloud optical quantum computing benefits from a fiber-based system, which avoids the need for spatial alignment but faces challenges like phase drifts and polarization fluctuations due to environmental conditions.* -
  • The study presents a successful measurement of squeezed light using a fiber system over 24 hours, utilizing stabilization techniques to reduce instabilities and an integrated controller for automatic alignment.* -
  • The results show consistent squeezing levels of -4.42 dB with minimal variation, indicating that this technology could enable the development of complex optical setups for long-term operation in quantum computing cloud services.*
View Article and Find Full Text PDF
Article Synopsis
  • Quantum computers need to protect information from errors, which can be done by encoding it into a logical state suitable for quantum error correction.
  • The Gottesman-Kitaev-Preskill (GKP) qubit is a strong candidate for this purpose due to its multiqubit operations that work well at optical frequencies.
  • This research successfully demonstrated a GKP state using propagating light at telecommunication wavelengths, showing promising results in nonclassicality and non-Gaussianity, which are essential for future quantum computing developments.
View Article and Find Full Text PDF

Measurement-based quantum computation with optical time-domain multiplexing is a promising method to realize a quantum computer from the viewpoint of scalability. Fault tolerance and universality are also realizable by preparing appropriate resource quantum states and electro-optical feedforward that is altered based on measurement results. While linear feedforward has been realized and become a common experimental technique, nonlinear feedforward was unrealized until now.

View Article and Find Full Text PDF
Article Synopsis
  • Non-Gaussian states with negative Wigner functions are essential for creating fault-tolerant quantum computers, but previous experiments lacked the use of ultrashort optical wave packets.
  • This paper reports the successful generation of non-Gaussian states from 8-ps wave packets in the 1545.32 nm telecommunications wavelength, utilizing photon subtraction techniques.
  • The research employs advanced technology such as a low-loss waveguide optical parametric amplifier and a pulsed homodyne measurement system, paving the way for more complex non-Gaussian states and improved high-speed quantum computation.
View Article and Find Full Text PDF

Controlling the temporal waveform of light is the key to a versatile light source in classical and quantum electronics. Although pulse shaping of classical light is mature and has been used in various fields, more advanced applications would be realized by a light source that generates arbitrary quantum light with arbitrary temporal waveforms. We call such a device a quantum arbitrary waveform generator (Q-AWG).

View Article and Find Full Text PDF

Telecommunication wavelength with well-developed optical communication technologies and low losses in the waveguide are advantageous for quantum applications. However, an experimental generation of non-classical states called non-Gaussian states at the telecommunication wavelength is still underdeveloped. Here, we generate highly-pure-single-photon states, one of the most primitive non-Gaussian states, by using a heralding scheme with an optical parametric oscillator and a superconducting nano-strip photon detector.

View Article and Find Full Text PDF

Continuous-wave (CW) squeezed light is used in the generation of various optical quantum states, and thus is a fundamental resource of fault-tolerant universal quantum computation using optical continuous variables. To realize a practical quantum computer, a waveguide optical parametric amplifier (OPA) is an attractive CW squeezed light source in terms of its THz-order bandwidth and suitability for modularization. The usages of a waveguide OPA in quantum applications thus far, however, are limited due to the difficulty of the generation of the squeezed light with a high purity.

View Article and Find Full Text PDF

A quantum processor to import, process, and export optical quantum states is a common core technology enabling various photonic quantum information processing. However, there has been no photonic processor that is simultaneously universal, scalable, and programmable. Here, we report on an original loop-based single-mode versatile photonic quantum processor that is designed to be universal, scalable, and programmable.

View Article and Find Full Text PDF

Attenuation of the secondary injury of spinal cord injury (SCI) can suppress the spread of spinal cord tissue damage, possibly resulting in spinal cord sparing that can improve functional prognoses. Granulocyte colony-stimulating factor (G-CSF) is a haematological cytokine commonly used to treat neutropenia. Previous reports have shown that G-CSF promotes functional recovery in rodent models of SCI.

View Article and Find Full Text PDF

Background: The open-door laminoplasty has been used to treat cervical spondylotic myelopathy. This technique has been applied to the surgical treatment of thoracic and lumbar spinal canal tumors instead of simple laminectomy or hemilaminectomy. However, previously reported laminoplasty methods did not keep posterior supporting elements intact such as the laminae and the spinous processes with supraspinous and interspinous ligaments, and almost all of them needed instruments for the fixation of reconstructed laminae.

View Article and Find Full Text PDF

Quantum information protocols require various types of entanglement, such as Einstein-Podolsky-Rosen, Greenberger-Horne-Zeilinger, and cluster states. In optics, on-demand preparation of these states has been realized by squeezed light sources, but such experiments require different optical circuits for different entangled states, thus lacking versatility. Here, we demonstrate an on-demand entanglement synthesizer that programmably generates all these entangled states from a single squeezed light source.

View Article and Find Full Text PDF
Article Synopsis
  • G-CSF, typically used for treating neutropaenia, shows potential for enhancing neurological recovery after spinal cord injuries, leading to further clinical trial phases.
  • A current phase III clinical trial is underway to assess G-CSF's efficacy for acute spinal cord injury, involving 88 patients split into treatment and placebo groups, with motor function assessed over 3 months.
  • The study adheres to ethical guidelines and regulations, ensuring transparent reporting of results, regardless of whether they are positive or negative.
View Article and Find Full Text PDF

Fractures of the axis are considered to be one of the most common injuries to the cervical spine, accounting for more than 20% of all cervical spine fractures. Multiple fractures of the axis are much rarer, accounting for 1% of all cervical fractures. Management of such complex fractures is still challenging, and there is no strong consensus for the treatment.

View Article and Find Full Text PDF

Cytotoxic T lymphocyte antigen-4 (CTLA-4) is constitutively expressed on CD25(+)CD4(+) regulatory T cells (Treg) and is suggested to play a role in Treg-mediated suppression. However, the results of analysis with anti-CTLA-4 have been controversial. We addressed this issue by analyzing mice over-expressing or deficient in CTLA-4.

View Article and Find Full Text PDF

Cytotoxic T lymphocyte antigen-4 (CTLA-4) induces major inhibitory signals for T cell activation. From analyses of TCR-transgenic (Tg) CTLA-4-deficient mice, it has been believed that CTLA-4 does not affect thymocyte development. To focus upon the in vivo function of CTLA-4 in thymocyte development from a different aspect, we have established Tg mice expressing either full-length CTLA-4 (FL-Tg) or a mutant CTLA-4 lacking the cytoplasmic region (truncated, TR-Tg), and analyzed thymocyte development.

View Article and Find Full Text PDF

The CDR3 regions of T cell receptor (TCR)-alpha and -beta chains play central roles in the recognition of antigen (Ag)-MHC complex. TCR repertoire is created on the basis of Ag recognition specificity by CDR3s. To analyze the potential spectrum of TCR-alpha and -beta to exhibit Ag specificity and generate TCR repertoire, we established hundreds of TCR transfectants bearing a single TCR-alpha or -beta chain derived from a cytotoxic T cell (CTL) clone, RT-1, specific for HIVgp160 peptide, and randomly picked up TCR-beta or -alpha chains.

View Article and Find Full Text PDF