Publications by authors named "Kan Lu"

Glutamate-NMDAR receptors (GRINs) have been reported to influence cancer immunogenicity; however, the relationship between GRIN alterations and the response to immune checkpoint inhibitors (ICIs) has not been determined. This study combined clinical characteristics and mutational profiles from multiple cohorts to form a discovery cohort (n = 901). The aim of this study was to investigate the correlation between the mutation status of the GRIN gene and the response to ICI therapy.

View Article and Find Full Text PDF

Background: Cholangiopathies comprise a spectrum of diseases without curative treatments. Pharmacological treatments based on bile acid (BA) metabolism regulation represent promising therapeutic strategies for the treatment of cholangiopathies. Gentiopicroside (GPS), derived from the Chinese medicinal herb Gentianae Radix, exerts pharmacological effects on bile acid metabolism regulation and oxidative stress.

View Article and Find Full Text PDF

Purpose: Cholestatic liver diseases are groups of hepatobiliary diseases without curative drug-based therapy options. Regulation of bile acid (BA) metabolism, hepatoperiductal fibrosis, and inflammatory response indicated present novel methods for the treatment of cholestatic liver disease. Costunolide (COS) from herb exerts a pharmacological effect of regulation of BA metabolism, liver fbrosis and inflammatory response.

View Article and Find Full Text PDF

The tripartite motif (TRIM) protein family is a highly conserved group of E3 ligases with 77 members known in the human, most of which consist of a RING-finger domain, one or two B-box domains, and a coiled-coil domain. Generally, TRIM proteins function as E3 ligases to facilitate specific proteasomal degradation of target proteins. In addition, E3 ligase independent functions of TRIM protein were also reported.

View Article and Find Full Text PDF

Purpose: Hepatocellular carcinoma (HCC) is one of the most common cancers in the world with a high mortality rate. Receptor tyrosine kinases play important roles in the occurrence and development of various cancers. Discoid protein domain receptor 1 (DDR1) is a special type of transmembrane receptor tyrosine kinase.

View Article and Find Full Text PDF

Diabetic nephropathy (DN) is among the common complications of diabetes and is a major cause of end-stage kidney disease. Emerging data indicate that renal inflammation is involved in DN progression and aggravation. Still, the exact cellular mechanisms remain unclear.

View Article and Find Full Text PDF

Amplification of the epidermal growth factor receptor gene () represents one of the most commonly observed genetic lesions in glioblastoma (GBM); however, therapies targeting this signaling pathway have failed clinically. Here, using human tumors, primary patient-derived xenografts (PDX), and a murine model for GBM, we demonstrate that EGFR inhibition leads to increased invasion of tumor cells. Further, EGFR inhibitor-treated GBM demonstrates altered oxidative stress, with increased lipid peroxidation, and generation of toxic lipid peroxidation products.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBMs) are recurrent lethal brain tumours. Recurrent GBMs often exhibit mesenchymal, stem-like phenotypes that could explain their resistance to therapy. Analyses revealed that recurrent GBMs have increased tension and express high levels of glycoproteins that increase the bulkiness of the glycocalyx.

View Article and Find Full Text PDF

Emerging evidence has shown that microRNAs (miRNAs) play a mediatory role in the pathogenesis of diabetic nephropathy (DN), but the function of the involved miRNAs is still incomplete. Here, we found that miR-455-3p was down-regulated in the human mesangial cells (HMC) and human proximal tubule epithelial cells (HK-2) stimulated with high glucose (HG) or transforming growth factor beta 1 (TGF-β1). Rho-associated coiled coil-containing protein kinase 2 (ROCK2) was identified as a directed target of miR-455-3p.

View Article and Find Full Text PDF

The molecular underpinnings of invasion, a hallmark of cancer, have been defined in terms of individual mediators but crucial interactions between these mediators remain undefined. In xenograft models and patient specimens, we identified a c-Met/β1 integrin complex that formed during significant invasive oncologic processes: breast cancer metastases and glioblastoma invasive resistance to antiangiogenic VEGF neutralizing antibody, bevacizumab. Inducing c-Met/β1 complex formation through an engineered inducible heterodimerization system promoted features crucial to overcoming stressors during metastases or antiangiogenic therapy: migration in the primary site, survival under hypoxia, and extravasation out of circulation.

View Article and Find Full Text PDF

Background/aims: The diagnosis of type 2 diabetic nephropathy (T2DN) patients is important to prevent the long-term damaging effects of kidney loss in patients with diabetes and is decisive for patient outcomes. The aim of this study was to explore urine retinol binding protein (RBP) and neutrophil gelatinase-associated lipocalin (NGAL) in T2DN patients with and without albuminuria.

Methods: A total of 293 T2DN patients were divided into three groups according to their urine albumin/urine creatinine ratio (UACR): normoalbuminuria group (UACR<30 mg/g, n=100), microalbuminuria group (UACR 30-300 mg/g, n=100) and macroalbuminuria group (UACR>300 mg/g, n=93); 50 non-diabetic subjects were recruited as the control group.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the pro-apoptotic gene SjBAD in Schistosoma japonicum, assessing its biology, immunology, and potential as a vaccine candidate for schistosomiasis.
  • Researchers successfully cloned and expressed the SjBAD gene in E. coli, producing a recombinant protein with a molecular weight of about 22 kDa that showed good immunogenicity.
  • Vaccination with the recombinant SjBAD protein resulted in significant reductions in both worm and liver egg counts in BALB/c mice, indicating its potential effectiveness as a vaccine against schistosomiasis.
View Article and Find Full Text PDF

Background: Given the paucity of information on dose intensity, the objective of this study is to describe the use of adjuvant chemotherapy for stage III colon cancer, focusing on relative dose intensity (RDI), overall survival (OS) and disease-free survival (DFS).

Methods: Retrospective cohort of 367 patients diagnosed with stage III colon cancer in 2003-2008 and treated at 19 VA medical centers. Kaplan-Meier curves summarize 5-year OS and 3-year DFS by chemotherapy regimen and RDI, and multivariable Cox proportional hazards regression was used to model these associations.

View Article and Find Full Text PDF

The aim of this study was to investigate the correlation of the proinflammatory marker tumor necrosis factor-α (TNF-α) and the tubular marker neutrophil gelatinase-associated lipocalin (NGAL) with the progression of the early stage of type 2 diabetic nephropathy (DN). Baseline levels of urinary TNF-α and NGAL were measured in 63 non-diabetic controls and 201 patients with type 2 diabetes and different albuminuria statuses. The patients with diabetes (n=125) with normo- or microalbuminuria were subsequently followed-up for 28 (25-32) months, with routine measurements of creatinine and urinary albumin excretion (UAE).

View Article and Find Full Text PDF

Angiogenesis inhibitors targeting the VEGF signaling pathway have been US FDA approved for various cancers including glioblastoma (GBM), one of the most lethal and angiogenic tumors. This has led to the routine use of the anti-VEGF antibody bevacizumab in recurrent GBM, conveying substantial improvements in radiographic response, progression-free survival and quality of life. Despite these encouraging beneficial effects, patients inevitably develop resistance and frequently fail to demonstrate significantly better overall survival.

View Article and Find Full Text PDF

Purpose: To identify mediators of glioblastoma antiangiogenic therapy resistance and target these mediators in xenografts.

Experimental Design: We conducted microarray analysis comparing bevacizumab-resistant glioblastomas (BRG) with pretreatment tumors from the same patients. We established novel xenograft models of antiangiogenic therapy resistance to target candidate resistance mediator(s).

View Article and Find Full Text PDF

Inhibition of VEGF signaling leads to a proinvasive phenotype in mouse models of glioblastoma multiforme (GBM) and in a subset of GBM patients treated with bevacizumab. Here, we demonstrate that vascular endothelial growth factor (VEGF) directly and negatively regulates tumor cell invasion through enhanced recruitment of the protein tyrosine phosphatase 1B (PTP1B) to a MET/VEGFR2 heterocomplex, thereby suppressing HGF-dependent MET phosphorylation and tumor cell migration. Consequently, VEGF blockade restores and increases MET activity in GBM cells in a hypoxia-independent manner, while inducing a program reminiscent of epithelial-to-mesenchymal transition highlighted by a T-cadherin to N-cadherin switch and enhanced mesenchymal features.

View Article and Find Full Text PDF

High levels of the soluble form of E-cadherin can be found in the serum of cancer patients and are associated with poor prognosis. Despite the possible predictive value of soluble E-cadherin, little is understood concerning its patho-physiological consequences in tumor progression. In this study, we show that soluble E-cadherin facilitates cell survival via functional interaction with cellular E-cadherin.

View Article and Find Full Text PDF

Activating epidermal growth factor receptor (EGFR) mutations are common in many cancers including glioblastoma. However, clinical responses to EGFR inhibitors are infrequent and short-lived. We show that the Src family kinases (SFK) Fyn and Src are effectors of oncogenic EGFR signaling, enhancing invasion and tumor cell survival in vivo.

View Article and Find Full Text PDF

Over the past four years, the annual US FDA-DIA pharmacogenomic workshops have brought together attendees with wide-ranging expertise spanning industry, regulatory authorities and academia. This special report summarizes a breakout session using a novel, interactive case format as a way to engage participants, raise awareness and share diverse learnings via 'real life' decisions that project teams might face in developing a new medicine. This case was situated just prior to approval by a Regulatory Authority as a project team is finalizing a new medicine label.

View Article and Find Full Text PDF

In this study, we investigated the precursor and active forms of a p53 small-molecule inhibitor for their effects on temozolomide (TMZ) antitumor activity against glioblastoma (GBM), using both in vitro and in vivo experimental approaches. Results from in vitro cell viability analysis showed that the cytotoxic activity of TMZ was substantially increased when p53 wild-type (p53(wt)) GBMs were cotreated with the active form of p53 inhibitor, and this heightened cytotoxic response was accompanied by increased poly(ADP-ribose) polymerase cleavage as well as elevated cellular phospho-H2AX. Analysis of the same series of GBMs, as intracranial xenografts in athymic mice, and administering corresponding p53 inhibitor precursor, which is converted to the active compound in vivo, yielded results consistent with the in vitro analyses: TMZ + p53 inhibitor precursor cotreatment of three distinct p53(wt) GBM xenografts resulted in significant enhancement of TMZ antitumor effect relative to treatment with TMZ alone, as indicated by serial bioluminescence monitoring as well as survival analysis (P < 0.

View Article and Find Full Text PDF

In tumors, new blood vessels develop not only from pre-existing vessels (angiogenesis), but can also be comprised of circulating vascular progenitor cells originating from the bone marrow (vasculogenesis). Besides endothelial progenitor cells (EPC) and pericyte progenitor cells (PPCs) that are incorporated into the growing vasculature, other subpopulations of bone marrow-derived cells (BMDC) contribute indirectly to tumor neovascularization by providing growth factors, cytokines, and other key proangiogenic molecules. Here, we describe specific methods that allow for the identification and functional characterization of these distinct BMDC populations in tumors as exemplified in mouse models of pancreatic neuroendocrine tumors and glioblastomas.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is one the most aggressive brain tumors due to the fast and invasive growth that is partly supported by the presence of extensive neovascularization. The matrix metalloproteinase MMP-2 has been associated with invasive and angiogenic properties in gliomas and is a marker of poor prognosis. Since MMP-2 is expressed in both tumor cells and endothelial cells in GBM, we generated genetically engineered MMP-2 knockout (MMP-2ko) GBM to examine the importance of the spatial expression of MMP-2 in tumor and/or normal host-derived cells.

View Article and Find Full Text PDF

Development of hypoxic regions is an indicator of poor prognosis in many tumors. Here, we demonstrate that HIF1alpha, the direct effector of hypoxia, partly through increases in SDF1alpha, induces recruitment of bone marrow-derived CD45+ myeloid cells containing Tie2+, VEGFR1+, CD11b+, and F4/80+ subpopulations, as well as endothelial and pericyte progenitor cells to promote neovascularization in glioblastoma. MMP-9 activity of bone marrow-derived CD45+ cells is essential and sufficient to initiate angiogenesis by increasing VEGF bioavailability.

View Article and Find Full Text PDF

The epidermal growth factor receptor (EGFR) is commonly amplified, overexpressed, and mutated in glioblastoma, making it a compelling molecular target for therapy. We have recently shown that coexpression of EGFRvIII and PTEN protein by glioblastoma cells is strongly associated with clinical response to EGFR kinase inhibitor therapy. PTEN loss, by dissociating inhibition of the EGFR from downstream phosphatidylinositol 3-kinase (PI3K) pathway inhibition, seems to act as a resistance factor.

View Article and Find Full Text PDF