Publications by authors named "Kampachiro Urasaki"

Unlabelled: We developed a nondestructive three-dimensional microbial visualization method utilizing synchrotron radiation X-ray microscale computed tomography to better understand the relationship between microorganisms and their surrounding habitats. The method was tested and optimized using a mixture of axenic and . The osmium-thiocarbohydrazide-osmium method was used to stain all the microbial cells, and gold hybridization was used to detect specific phylogenetic microbial groups.

View Article and Find Full Text PDF

In this study, a long-term operation of 2,747 days was conducted to evaluate the performance of the upflow anaerobic sludge blanket (UASB) reactor and investigated the degradation mechanisms of high-organic loading phenol wastewater. During the reactor operation, the maximum chemical oxygen demand (COD) removal rate of 6.1 ± 0.

View Article and Find Full Text PDF

A method called hemin-tyramide signal amplification (Hemin-TSA) was developed for visualization of environmental microorganisms using hemin and tyramide signal amplification. In Hemin-TSA, hemin, which has peroxidase activity, is bound to microbial cells, and a desired fluorescent dye is deposited on the microbial cells by a hemin-catalyzed TSA reaction. The protocol was initially optimized in terms of hemin concentration, hemin binding time and repeated reaction times of TSA.

View Article and Find Full Text PDF

Retaining sufficient anammox bacteria (AnAOB) while keeping the anammox-based process stable is the focus of the study of anammox technology, especially in a one-stage partial nitritation/anammox (PNA) process. The use of hydroxyapatite (HAP) granules in an anammox-based process is innovative for its potential to improve the nitrogen removal rate and achieve simultaneous removal of phosphorus. In this study, the HAP-based granular sludge was employed using enhancement strategies for an excellent nitrogen removal performance in a one-stage PNA process.

View Article and Find Full Text PDF

High solid anaerobic membrane bioreactor (HSAnMBR) is widely applied in biomass treatment and energy regeneration, while membrane operation performance and membrane fouling control remain critical issues. In this study, a HSAnMBR was utilized for waste activated sludge (WAS) treatment at organic loading rates of 3.69-3.

View Article and Find Full Text PDF

A lengthy start-up period has been one of the key obstacles limiting the application of the anammox process. In this investigation, a nitrification-denitrification sludge was used to start-up the anammox EGSB process. The transformation process from nitrification-denitrification sludge to anammox granule sludge was explored through the aspects of nitrogen removal performance, granule properties, microbial community structure, and evolution route.

View Article and Find Full Text PDF

In low-strength ammonium wastewater (LSAWW) treatment, the application of anammox-based process is still limited due to extreme instability and the poor nitrogen removal rate (NRR). In this work, granule sludge, comprised of functional microbes and hydroxyapatite (HAP), was inoculated and cultivated in a one-stage partial nitritation/anammox (PNA) reactor for LSAWW treatment. The results showed that at the hydraulic retention time (HRT) of about 1.

View Article and Find Full Text PDF

This study investigated the feasibility of the methanogenic treatment of electronic industry wastewater containing tetramethylammonium hydroxide (TMAH), monoethanolamine (MEA) and sulfate in a lab-scale mesophilic up-flow anaerobic sludge blanket reactor. Feeding a mixture of electronic industry wastewater and co-substrate organics to the reactor for smooth acclimatization of sludge gave complete degradation of each organics within five days. When the reactor was fed only electronic industry wastewater, total COD removal, TMAH removal and MEA removal were achieved over 80, 99 and 99%, respectively, at an organic loading rate of 11.

View Article and Find Full Text PDF