Publications by authors named "Kamiya Tikoo"

Obesity is a metabolic state associated with excess of positive energy balance. While adipose tissues are considered the major contributor for complications associated with obesity, they influence a variety of tissues and inflict significant metabolic and inflammatory alterations. Unfortunately, the communication network between different cell-types responsible for such systemic alterations has been largely unexplored.

View Article and Find Full Text PDF

Background: Obesity is now a worldwide epidemic disease and poses a major risk for diet related diseases like type 2 diabetes, cardiovascular disease, stroke and fatty liver among others. In the present study we employed the murine model of diet-induced obesity to determine the early, tissue-specific, gene expression signatures that characterized progression to obesity and type 2 diabetes.

Results: We used the C57BL/6 J mouse which is known as a counterpart for diet-induced human diabetes and obesity model.

View Article and Find Full Text PDF

Kal-1 is a polyherbal decoction of seven different natural ingredients, traditionally used in controlling sugar levels, inflammatory conditions particularly regulating metabolic and immunoinflammatory balance which are the major factors involved in obesity and related diseases. In the present study, we aimed to investigate the effect of Kal-1 (an abbreviation derived from the procuring source) on diet-induced obesity and type II diabetes using C57BL/6J mice as a model. The present study was performed with two experimental groups involving obese and prediabetic mice as study animals.

View Article and Find Full Text PDF

Molecular mechanism governing biological processes leading to dietary obesity and diabetes are largely unknown. Here we study the liver proteome differentially expressed in a long-term high-fat and high-sucrose diet (HFHSD)-induced obesity and diabetes mouse model. Changes in mouse liver proteins were identified using iTRAQ, offline 2D LC (SCX and RP) and MALDI-TOF/TOF MS.

View Article and Find Full Text PDF