Publications by authors named "Kaminari A"

The effect of carbon dots (CDs) on a model blayer membrane was studied as a means of comprehending their ability to affect cell membranes. Initially, the interaction of N-doped carbon dots with a biophysical liposomal cell membrane model was investigated by dynamic light scattering, z-potential, temperature-modulated differential scanning calorimetry, and membrane permeability. CDs with a slightly positive charge interacted with the surface of the negative-charged liposomes and evidence indicated that the association of CDs with the membrane affects the structural and thermodynamic properties of the bilayer; most importantly, it enhances the bilayer's permeability against doxorubicin, a well-known anticancer drug.

View Article and Find Full Text PDF

The enzyme ataxia-telangiectasia mutated (ATM) kinase is a pluripotent signaling mediator which activates cellular responses to genotoxic and metabolic stress. It has been shown that ATM enables the growth of mammalian adenocarcinoma stem cells, and therefore the potential benefits in cancer chemotherapy of a number of ATM inhibitors, such as KU-55933 (KU), are currently being investigated. We assayed the effects of utilizing a triphenylphosphonium-functionalized nanocarrier delivery system for KU on breast cancer cells grown either as a monolayer or in three-dimensional mammospheres.

View Article and Find Full Text PDF

The abilities of sub-cellular targeting and stimuli-responsiveness are critical challenges in pharmaceutical nanotechnology. In the present study, glyceryl monooleate (GMO)-based non-lamellar lyotropic liquid crystalline nanoparticles were stabilized by the poly(2-(dimethylamino)ethyl methacrylate)-b-poly(lauryl methacrylate) block copolymer carrying tri-phenyl-phosphine cations (TPP-QPDMAEMA-b-PLMA), either used alone or in combination with other polymers as co-stabilizers. The systems were designed to perform simultaneously sub-cellular targeting, stimuli-responsiveness and to exhibit stealthiness.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a multifactorial disorder strongly involving the formation of amyloid-β (Aβ) oligomers, which subsequently aggregate into the disease characteristic insoluble amyloid plaques, in addition to oxidative stress, inflammation and increased acetylcholinesterase activity. Moreover, Aβ oligomers interfere with the expression and activity of Glycogen synthase kinase-3 (GSK3) and Protein kinase B (PKB), also known as AKT. In the present study, the potential multimodal effect of two synthetic isatin thiosemicarbazones (ITSCs), which have been previously shown to prevent Aβ aggregation was evaluated.

View Article and Find Full Text PDF

To address the major medical need for effective chemotherapeutics/diagnostics for brain cancer, in this work three cyclopentadienyl M(CO) (M = Re, Tc) complexes, which cross the blood-brain barrier (BBB) in high % and are designed to mimic the anticancer agent 2-phenylbenzothiazole, are in vitro and in vivo evaluated for anticancer action. The study includes cytotoxicity and uptake studies in cancer and healthy neuronal cell lines, mechanistic investigation of potential anticancer pathways, and biodistribution studies in mice bearing glioblastoma xenografts. The stable Re complexes exhibit selective uptake and significant antiproliferative effect, particularly against U-251 MG glioblastoma cells, with no significant toxicity in healthy neurons, demonstrating the suitability of this type of complexes to serve as selective therapeutic/imaging agents for brain cancer.

View Article and Find Full Text PDF

Aiming to understand and enhance the capacity of carbon dots (CDs) to transport through cell membranes and target subcellular organelles-in particular, mitochondria-a series of nitrogen-doped CDs were prepared by the one-step microwave-assisted pyrolysis of citric acid and ethylenediamine. Following optimization of the reaction conditions for maximum fluorescence, functionalization at various degrees with alkylated triphenylphosphonium functional groups of two different alkyl chain lengths afforded a series of functionalized CDs that exhibited either lysosome or mitochondria subcellular localization. Further functionalization with rhodamine B enabled enhanced fluorescence imaging capabilities in the visible spectrum and allowed the use of low quantities of CDs in relevant experiments.

View Article and Find Full Text PDF

An efficient doxorubicin (DOX) drug delivery system with specificity against tumor cells was developed, based on multi-walled carbon nanotubes (MWCNTs) functionalized with guanidinylated dendritic molecular transporters. Acid-treated MWCNTs (oxCNTs) interacted both electrostatically and through hydrogen bonding and van der Waals attraction forces with guanidinylated derivatives of 5000 and 25,000 Da molecular weight hyperbranched polyethyleneimine (GPEI5K and GPEI25K). Chemical characterization of these GPEI-functionalized oxCNTs revealed successful decoration with GPEIs all over the oxCNTs sidewalls, which, due to the presence of guanidinium groups, gave them aqueous compatibility and, thus, exceptional colloidal stability.

View Article and Find Full Text PDF

Inhibition of β-amyloid peptide (Αβ) aggregation in Alzheimer's disease (AD) is among the therapeutic approaches against AD which still attracts scientific research interest. In the search for compounds that interact with Aβ and disrupt its typical aggregation course toward oligomeric or polymeric toxic assemblies, small organic molecules of natural origin, combining low molecular weight (necessary blood-brain barrier penetration) and low toxicity (necessary for pharmacological application), are greatly sought after. Isatin (1-indoline-2,3-dione), a natural endogenous indole, and many of its derivatives exhibit a wide spectrum of neuropharmacological and chemotherapeutic properties.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) have garnered increasing attention over the past decade, as they are believed to play a crucial role in tumor progression and drug resistance. Accumulating evidence provides insight into the function of autophagy in maintenance and survival of CSCs. Here, we studied the impact of a mitochondriotropic triphenylphosphonium-functionalized dendrimeric nanocarrier on cultured breast cancer cell lines, grown either as adherent cells or as mammospheres that mimic a stem-like phenotype.

View Article and Find Full Text PDF
Article Synopsis
  • Drug-loaded thermosensitive liposomes are studied for their potential in delivering anticancer drugs in combination with mild hyperthermia, as they effectively release drugs at specific temperatures (40-42 °C).
  • These liposomes incorporate monoalkylether phosphatidylcholine lipids, particularly the methylated PAF derivative, which enhances drug release and has inherent anticancer activity.
  • In vitro tests show that these liposomes enable controlled DOX release, improve cancer cell uptake, and effectively inhibit cell viability, especially in human prostate cancer cells.
View Article and Find Full Text PDF

Matrix metalloprotease 9 (MMP-9) is a 92 kDa type IV collagenase and a member of the family of endopeptidases. MMP-9 is involved in the degradation of extracellular matrix components, tissue remodeling, cellular receptor stripping, and processing of various signaling molecules. In the CNS, the effects of MMP-9 are quite complex, since it exerts beneficial effects including neurogenesis, angiogenesis, myelogenesis, axonal growth, and inhibition of apoptosis, or destructive effects including apoptosis, blood-brain barrier disorder, and demyelination.

View Article and Find Full Text PDF

The question for discriminating iron gall inks is addressed by correlating their infrared (IR) spectra in liquid and dried states with the materials used in their formulations and considering their possible interactions. A series of laboratory inks were prepared according to historic recipes, mainly found in 19th-century documents, and were accordingly studied using Fourier transform infrared (FT-IR) spectroscopy. All ink formulations were based on Aleppo galls, ferrous sulfate, and gum arabic at variable proportions, with various added components, such as alum, vinegar, glycerol, sugar, silver nitrate, cloves, and white wine.

View Article and Find Full Text PDF

The successful synthesis of hydroxyapatite (HA), β-Tricalcium phosphate (β-TCP) and two biphasic mixtures (BCPs) of the two was performed by means of wet precipitation. The resulting crystals were characterized and the BCP composition was analyzed and identified as 13% HA-87% TCP and 41% HA-59% TCP. All samples were treated with curcumin solutions, and the degree of curcumin loading and release was found to be proportional to the TCP content of the ceramic.

View Article and Find Full Text PDF

Objectives: The use of chlorhexidine (CHX) with or without alcohol has been recommended for a number of clinical applications. On the other hand, there is a plethora of widely subscribed antiseptics, such as agent C31G (alkyl dimethyl glycine/alkyl dimethyl amine oxide), which has not yet been evaluated postsurgically. The effectiveness of three different mouthrinses (CHX with and without alcohol, C31G) in plaque control and early wound healing was compared postoperatively.

View Article and Find Full Text PDF

A hallmark of Alzheimer's disease (AD) is the accumulation of oligomeric amyloid-β (Aβ) peptide, which may be primarily responsible for neuronal dysfunction. Insulin signaling provides a defense mechanism against oligomer-induced neuronal loss. We previously described the neuroprotective role of matrix metalloproteinase 9 (MMP-9) in decreasing the formation of Aβ oligomers.

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is the leading genetic cause of autism. Mutations in Fmr1 (fragile X mental retardation 1 gene) engender exaggerated translation resulting in dendritic spine dysmorphogenesis, synaptic plasticity alterations, and behavioral deficits in mice, which are reminiscent of FXS phenotypes. Using postmortem brains from FXS patients and Fmr1 knockout mice (Fmr1(-/y)), we show that phosphorylation of the mRNA 5' cap binding protein, eukaryotic initiation factor 4E (eIF4E), is elevated concomitant with increased expression of matrix metalloproteinase 9 (MMP-9) protein.

View Article and Find Full Text PDF

Deposition of aggregated amyloid beta (Aβ) is a major hallmark of Alzheimer's disease (AD)-a common age-related neurodegenerative disorder. Typically, Aβ is generated as a peptide of varying lengths. However, a major fraction of Aβ peptides in the brains of AD patients has undergone posttranslational modifications, which often radically change the properties of the peptides.

View Article and Find Full Text PDF

We describe a novel mutation in human mitochondrial NADH dehydrogenase 1 gene (ND1), a G to A transition at nucleotide position 3337, which is co-segregated with two known mutations in tRNALeu(CUN) A12308G and tRNAThr C15946T. These mutations were detected in two unrelated patients with different clinical phenotypes, exhibiting cardiomyopathy as the common symptom. The ND1 G3337A mutation that was detected was found almost homoplasmic in the two patients and it was absent in 150 individuals that were tested as control group.

View Article and Find Full Text PDF