Publications by authors named "Kamilla Silva Oliveira"

Introduction: Reduced water content in the soil triggers physiological, biochemical, and morphological damage to plants, aggravated by nutritional deficiency. One possible strategy to mitigate this damage comprises the use of silicon (Si). This study investigated whether Si can mitigate the damage caused by water deficit through nutritional mechanisms in bean plants grown under field conditions.

View Article and Find Full Text PDF

The concentration of atmospheric CO and temperature are pivotal components of ecosystem productivity, carbon balance, and food security. In this study, we investigated the impacts of a warmer climate (+2 °C above ambient temperature) and an atmosphere enriched with CO (600 ppm) on gas exchange, antioxidant enzymatic system, growth, nutritive value, and digestibility of a well-watered, managed pasture of Megathyrsus maximus, a tropical C forage grass, under field conditions. Elevated [CO] (eC) improved photosynthesis and reduced stomatal conductance, resulting in increased water use efficiency and plant C content.

View Article and Find Full Text PDF

Frequent droughts have led to an expansion of irrigated common bean (Phaseolus vulgaris L.) cultivation areas. An effective strategy to enhance water use efficiency and optimize crop growth is the application of silicon (Si) and potassium (K).

View Article and Find Full Text PDF

Background: Silicon (Si) is a multiple stress attenuator element in plants, however more research is needed to elucidate the actions in the plants defense system with low nutrition of manganese (Mn) for a prolonged period, and the attenuation mechanisms involved in the effects of Mn deficiency on energy cane with high fiber content. Thus, the objective of this study was to evaluate whether Si reduces the oxidative stress of the energy cane grown in low Mn in nutrient solution, to mitigate the effects of Mn deficiency, improving enzymatic and non-enzymatic defense, uptake of Mn the plant growth.

Methods: An experiment was carried out with pre-sprouted seedlings of Saccharum spontaneum L.

View Article and Find Full Text PDF

Manganese (Mn) is highly demanded by Poaceae, and its deficiency induces physiological and biochemical responses in plants. Silicon (Si), which is beneficial to plants under various stress conditions, may also play an important role in plants without stress. However, the physiological and nutritional mechanisms of Si to improve Mn nutrition in sugarcane and energy cane, in addition to mitigating deficiency stress, are still unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Nutritional deficiencies in quinoa crops, particularly in nitrogen, phosphorus, potassium, calcium, and magnesium, negatively impact plant health and growth, leading to characteristic visual symptoms and reduced dry mass.
  • The study investigates the role of silicon (Si) in alleviating these deficiencies, using a factorial experiment design that compares the effects of nutrient absence with and without Si supplementation.
  • Results indicate that Si helps maintain the plant's photosynthetic function and chlorophyll production, enhances membrane integrity, and reduces electrolyte leakage, particularly mitigating the impacts of nitrogen and calcium deficiencies and promoting higher dry mass production.
View Article and Find Full Text PDF

The intensity damages caused by nutritional deficiency in growing plants can vary with nutrients. The effects caused by nutrient omission in the plant nutritional efficiency in relation to the absorption and use of the missing nutrient, and the reasons why these damages reflect in other nutrients have not yet been reported in the culture of scarlet eggplant. A better understanding of the nutritional mechanisms involved may clarify why certain nutrients cause greater limitations than other during plants growth.

View Article and Find Full Text PDF