Microplastics (MPs) are increasingly widespread in the environment, which raises questions about their potential effects at different biological levels. It is essential to assess the impacts on biodiversity, and it is also crucial to understand whether the presence of MPs can interfere with the biological traits of species of relevance in public health. Considering that the life-history traits of mosquitoes, such as size and the wingbeat frequency (WBF), are related to its vector competence, here, we study the effects of 10 particles L (as expected concentration of MPs on the environment, using the polyethylene type) on WBF, as well as wing morphology, testing the Culicidae species found across all continents, Aedes aegypti, as an indicator.
View Article and Find Full Text PDFTo reduce the speed of selection of populations resistant to chemical insecticides, photodynamic inactivation (PDI) against Aedes aegypti is a hot-topic and promising alternative technique to vector control. Temperature is an important factor in the survival of Ae. aegypti larvae and mosquitoes as it influences physiology, behavior, and ecology.
View Article and Find Full Text PDFAntimicrobial photodynamic treatment (aPDT) is a photooxidative process based on the excitation of a photosensitizer (PS) in the presence of molecular oxygen, under specific wavelengths of light. It is a promising method for advanced treatment of water and wastewater, particularly targeting disinfection challenges, such as antibiotic-resistant bacteria (ARB). Research in improved aPDT has been exploring new PS materials, and additives in general.
View Article and Find Full Text PDFThe use of artificial light sources in plants is considered a type of photobiomodulation (PBM), a trend in agriculture and food industries, aiming at decontamination, pest control, and increased production yield. However, literature lacks a broader assessment to address the effects of photon light spectra on plant characteristics. Here, we aimed to describe the effects of visible light, infrared, and ultraviolet light upon Allium cepa, a known bioindicator, under various light doses.
View Article and Find Full Text PDFGiardia duodenalis and Cryptosporidium spp. are two of the most prominent aetiological agents of waterborne diseases. Therefore, efficient and affordable methodologies for identifying and quantifying these parasites in water are increasingly necessary.
View Article and Find Full Text PDFCysts and (oo)cysts are the infective forms of parasitic protozoa, as Giardia and Cryptosporidium, which are widespread and associated to worldwide waterborne diseases outbreaks. These microorganisms pose a challenge to public health, as they are resistant to conventional disinfection methods, which make them important parameters when evaluating inactivation efficiency. However, when (oo)cysts are targets, it is challenging to infer inactivation efficacy, as it may require infectivity tests that are not often an option for laboratory routine analysis.
View Article and Find Full Text PDFMunicipal wastewater is a source of pathogenic protozoan (oo)cysts and may play a significant role in spreading waterborne diseases. This scenario becomes more critical as treated sewage from municipal wastewater treatment plants (WWTP) is discharged into springs, which are often used for water supply, irrigation, recreation and, further downstream, indirect potable reuse, quite common in Brazil. This study aimed to elucidate, regarding microbiological quality, the performance of a full-scale WWTP, consisting of preliminary treatment, upflow anaerobic sludge blanket (UASB) reactor, activated sludge system and ultraviolet (UV) radiation disinfection.
View Article and Find Full Text PDFand are pathogenic protozoa often present in the environment in their infective form(cysts and oocysts). These parasites are very resistant to disinfection, which makes them important target organisms in environmental quality monitoring and sanitation. Viability assessment provides an interpretation of cell inactivation, and it can be evaluated by membrane integrity as well as enzyme activity, using different staining methods.
View Article and Find Full Text PDFWater treatment plant (WTP) residues, e.g. sludge and filter backwash water (FBW), may contain pathogenic microorganisms, as spp.
View Article and Find Full Text PDF