Publications by authors named "Kamila Janzakova"

Neural networks are powerful tools for solving complex problems, but finding the right network topology for a given task remains an open question. Biology uses neurogenesis and structural plasticity to solve this problem. Advanced neural network algorithms are mostly relying on synaptic plasticity and learning.

View Article and Find Full Text PDF

Electropolymerization is a bottom-up materials engineering process of micro/nano-scale that utilizes electrical signals to deposit conducting dendrites morphologies by a redox reaction in the liquid phase. It resembles synaptogenesis in the brain, in which the electrical stimulation in the brain causes the formation of synapses from the cellular neural composites. The strategy has been recently explored for neuromorphic engineering by establishing link between the electrical signals and the dendrites' shapes.

View Article and Find Full Text PDF

Although materials and processes are different from biological cells', brain mimicries led to tremendous achievements in parallel information processing via neuromorphic engineering. Inexistent in electronics, we emulate dendritic morphogenesis by electropolymerization in water, aiming in operando material modification for hardware learning. Systematic study of applied voltage-pulse parameters details on tuning independently morphological aspects of micrometric dendrites': fractal number, branching degree, asymmetry, density or length.

View Article and Find Full Text PDF

One of the major limitations of standard top-down technologies used in today's neuromorphic engineering is their inability to map the 3D nature of biological brains. Here, it is shown how bipolar electropolymerization can be used to engineer 3D networks of PEDOT:PSS dendritic fibers. By controlling the growth conditions of the electropolymerized material, it is investigated how dendritic fibers can reproduce structural plasticity by creating structures of controllable shape.

View Article and Find Full Text PDF