Publications by authors named "Kamila Iskhakova"

Orthopedic implants made of biodegradable magnesium (Mg) provide an alternative to nondegradable implants for fracture repair. Widely reported to be pro-osteogenic, Mg implants are also believed to be anti-inflammatory and anti-osteoclastic, but this is difficult to reconcile with the early clinical inflammation observed around these implants. Here, by surveying implant healing in a rat bone model, we determined the cellular responses and structural assembly of bone correlated with the surface changes of Mg implants inherent in degradation.

View Article and Find Full Text PDF
Article Synopsis
  • Magnesium (Mg) alloys, particularly those with gadolinium, are emerging as promising materials for temporary bone implants due to their biocompatibility and mechanical properties, presenting a potential replacement for traditional titanium and stainless-steel implants.
  • A study involving rat tibias over various time periods (10, 20, and 32 weeks) used advanced imaging techniques to evaluate the implants' degradation behavior and their integration with bone tissues.
  • Results indicate that the Mg-xGd implants not only form a stable degradation layer and support bone remodeling similar to titanium but also do not accumulate harmful levels of Mg or Gd in organs, making them suitable for use in bone repair.
View Article and Find Full Text PDF

Magnesium alloys are some of the most convenient biodegradable materials for bone fracture treatment due to their tailorable degradation rate, biocompatibility, and mechanical properties resembling those of bone. Despite the fact that magnesium-based implants and ZX00 (Mg-0.45Zn-0.

View Article and Find Full Text PDF

Magnesium (Mg)-based implants have re-emerged in orthopaedic surgery as an alternative to permanent implants. Literature reveals little information on how the degradation of biodegradable implants may introduce safety implications for patient follow-up using medical imaging. Magnetic resonance imaging (MRI) benefits post-surgery monitoring of bone healing and implantation sites.

View Article and Find Full Text PDF

Magnesium (Mg)-based implants are highly attractive for the orthopedic field and may replace titanium (Ti) as support for fracture healing. To determine the implant-bone interaction in different bony regions, we implanted Mg-based alloy ZX00 (Mg < 0.5 Zn < 0.

View Article and Find Full Text PDF

Magnesium is attractive for the application as a temporary bone implant due to its inherent biodegradability, non-toxicity and suitable mechanical properties. The degradation process of magnesium in physiological environments is complex and is thought to be a diffusion-limited transport problem. We use a multi-scale imaging approach using micro computed tomography and transmission X-ray microscopy (TXM) at resolutions below 40 nm.

View Article and Find Full Text PDF