In this work, we present an experimental approach for monitoring the temperature of submicrometric, real-time operating electrical circuits using luminescence thermometry. For this purpose, we utilized lanthanide-doped up-converting nanocrystals as nanoscale temperature probes, which, combined with a highly sensitive confocal photoluminescence microscope, enabled temperature monitoring with spatial resolution limited only by the diffraction of light. To validate our concept, we constructed a simple model of an electrical microcircuit based on a single silver nanowire with a diameter of approximately 100 nm and a length of about 50 µm, whose temperature increase was induced by electric current flow.
View Article and Find Full Text PDFIn this work, we apply single-molecule fluorescence microscopy and spectroscopy to probe plasmon-enhanced fluorescence and Förster resonance energy transfer in a nanoscale assemblies. The structure where the interplay between these two processes was present consists of photoactive proteins conjugated with silver nanowires and deposited on a monolayer graphene. By comparing the results of continuous-wave and time-resolved fluorescence microscopy acquired for this structure with those obtained for the reference samples, where proteins were coupled with either a graphene monolayer or silver nanowires, we find clear indications of the interplay between plasmonic enhancement and the energy transfer to graphene.
View Article and Find Full Text PDFFluorescence excitation spectroscopy at cryogenic temperatures carried out on hybrid assemblies composed of photosynthetic complexes deposited on a monolayer graphene revealed that the efficiency of energy transfer to graphene strongly depended on the excitation wavelength. The efficiency of this energy transfer was greatly enhanced in the blue-green spectral region. We observed clear resonance-like behavior for both a simple light-harvesting antenna containing only two chlorophyll molecules (PCP) and a large photochemically active reaction center associated with the light-harvesting antenna (PSI-LHCI), which pointed towards the general character of this effect.
View Article and Find Full Text PDFMultimodal polymer encapsulated CdSe/FeO nanoplatforms with dual optical and magnetic properties have been fabricated. We demonstrate that CdSe/FeO nanocapsules (NCs) upon excitation with UV radiation or NIR fs-laser excitation exhibit intense one- or two-photon emission at 535 nm, whereas the combination of an alternating magnetic field and 808 nm IR laser excitation results in heat generation. Since anticancer therapies require relatively high doses of FeO nanoparticles (NPs) to induce biologically relevant temperature jumps, the therapeutic effects of 0.
View Article and Find Full Text PDFWe demonstrate that single functionalized silver nanowires form a geometric platform suitable for efficient real-time detection of single photoactive proteins. By collecting series of images using wide-field fluorescence microscopy, events of single protein attachment can be distinguished with the signal to noise ratio further improved by fluorescence enhancement due to plasmon excitations in the nanowires. The enhancement is evidenced by strong shortening of the fluorescence decay of single photoactive proteins conjugated to the silver nanowires.
View Article and Find Full Text PDFIn this paper, we demonstrate plasmonic substrates prepared on demand, using a straightforward technique, based on laser-induced photochemical reduction of silver compounds on a glass substrate. Importantly, the presented technique does not impose any restrictions regarding the shape and length of the metallic pattern. Plasmonic interactions have been probed using both Stokes and anti-Stokes types of emitters that served as photoluminescence probes.
View Article and Find Full Text PDFFluorescence microscopy and spectroscopy were applied for studying the optical properties of a hybrid nanostructure, in which we combine plasmon-induced metal enhanced fluorescence with energy transfer to epitaxial graphene. Covering the layer of silver islands with a monolayer graphene, while turning on the efficient energy transfer from emitters, only moderately affects the enhancement of fluorescence attributed to the plasmon resonance in metallic nanostructures-as evidenced by the analysis of fluorescence decays. The results show that it is feasible to combine the properties of graphene with metal-enhanced fluorescence.
View Article and Find Full Text PDFThe energy transfer from photosynthetic complex photosystem I to thermally reduced graphene oxide was studied using fluorescence microscopy and spectroscopy, and compared against the structure in which monolayer epitaxial graphene was used as the energy acceptor. We find that the properties of reduced graphene oxide (rGO) as an energy acceptor is qualitatively similar to that of epitaxial graphene. Fluorescence quenching, which in addition to shortening of fluorescence decay, is a signature of energy transfer varies across rGO substrates and correlates with the transmission pattern.
View Article and Find Full Text PDF