Publications by authors named "Kamil Steczkiewicz"

α/β Hydrolase-like enzymes form a large and functionally diverse superfamily of proteins. Despite retaining a conserved structural core consisting of an eight-stranded, central β-sheet flanked with six α-helices, they display a modular architecture allowing them to perform a variety of functions, like esterases, lipases, peptidases, epoxidases, lyases, and others. At the same time, many α/β hydrolase-like families, even enzymatically distinct, share a high degree of sequence similarity.

View Article and Find Full Text PDF

Papain-like cysteine peptidases form a big and highly diverse superfamily of proteins involved in many important biological functions, such as protein turnover, deubiquitination, tissue remodeling, blood clotting, virulence, defense, and cell wall remodeling. High sequence and structure diversity observed within these proteins hinders their comprehensive classification as well as the identification of new representatives. Moreover, in general protein databases, many families already classified as papain like lack details regarding their mechanism of action or biological function.

View Article and Find Full Text PDF

S100A8 and S100A9 are small, human, Ca-binding proteins with multiple intracellular and extracellular functions in signaling, regulation, and defense. The two proteins are not detected as monomers but form various noncovalent homo- or hetero-oligomers related to specific activities in human physiology. Because of their significant roles in numerous medical conditions, there has been intense research on the conformational properties of various S100A8 and S100A9 proteoforms as essential targets of drug discovery.

View Article and Find Full Text PDF

Here, we describe functional characterization of an early gene () product of a virulent sk1like phage, vB_Llc_bIBBF13 (abbr. F13). The GP46 protein carries a catalytically active RecA-like domain belonging to the P-loop NTPase superfamily.

View Article and Find Full Text PDF

The lesser grain borer, (F.) (Coleoptera: Bostrichidae), is a major global pest of cereal grains. Infestations are difficult to control as larvae feed inside grain kernels, and many populations are resistant to both contact insecticides and fumigants.

View Article and Find Full Text PDF

For nearly half of the proteome of an important pathogen, , the function has not yet been recognised. Here, we characterise one such mysterious protein PA2504, originally isolated by us as a sole partner of the RppH RNA hydrolase involved in transcription regulation of multiple genes. This study aims at elucidating details of PA2504 function and discussing its implications for bacterial biology.

View Article and Find Full Text PDF

Bacteriophage-encoded single strand annealing proteins (SSAPs) are recombinases which can substitute the classical, bacterial RecA and manage the DNA metabolism at different steps of phage propagation. SSAPs have been shown to efficiently promote recombination between short and rather divergent DNA sequences and were exploited for genetic engineering mainly in Gram-negative bacteria. In opposition to the conserved and almost universal bacterial RecA protein, SSAPs display great sequence diversity.

View Article and Find Full Text PDF

The receptor for advanced glycation end products (RAGE) is an immunoglobulin-type multiligand transmembrane protein expressed in numerous cell types, including the central nervous system cells. RAGE interaction with S100B, released during brain tissue damage, leads to RAGE upregulation and initialization of a spiral proinflammatory associated with different neural disorders. Here, we present the structural characterization of the hetero-oligomeric complex of the full-length RAGE with S100B, obtained by a combination of mass spectrometry-based methods and molecular modeling.

View Article and Find Full Text PDF

Cobalamin is a cofactor present in essential metabolic pathways in animals and one of the water-soluble vitamins. It is a complex compound synthesized solely by prokaryotes. Cobalamin dependence is scattered across the tree of life.

View Article and Find Full Text PDF

Mucoromycotina are often considered mainly in pathogenic context but their biology remains understudied. We describe the genomes of six Mucoromycotina fungi representing distant saprotrophic lineages within the subphylum (i.e.

View Article and Find Full Text PDF

KfrA, encoded on the broad-host-range RA3 plasmid, is an alpha-helical DNA-binding protein that acts as a transcriptional autoregulator. The KfrA operator site overlaps the promoter and is composed of five 9-bp direct repeats (DRs). Here, the biological properties of KfrA were studied using both and approaches.

View Article and Find Full Text PDF
Article Synopsis
  • * Five fungal isolates were collected from coccidioidomycosis patients and identified through molecular and morphological analyses, confirming their affiliation with the Cordycipitaceae family.
  • * Genomic comparisons indicate that P. americanum shares a core genome with 6371 genes with related species, along with 148 unique genes that may influence its adaptability and potential novel functions.
View Article and Find Full Text PDF

Mono-saturated polyprenols (dolichols) have been found in almost all Eukaryotic cells, however, dolichols containing additional saturated bonds at the ω-end, have been identified in and . Here we confirm using an LC-ESI-QTOF-MS analysis, that poly-saturated dolichols are abundant in other filamentous fungi, , and , while the yeast only contains the typical mono-saturated dolichols. We also show, using differential scanning calorimetry (DSC) and fluorescence anisotropy of 1,6-diphenyl-l,3,5-hexatriene (DPH) that the structure of dolichols modulates the properties of membranes and affects the functioning of dolichyl diphosphate mannose synthase (DPMS).

View Article and Find Full Text PDF

The last decade brought a still growing experimental evidence of mobilome impact on host's gene expression. We systematically analysed genomic location of transposable elements (TEs) in 625 publicly available fungal genomes from the NCBI database in order to explore their potential roles in genome evolution and correlation with species' lifestyle. We found that non-autonomous TEs and remnant copies are evenly distributed across genomes.

View Article and Find Full Text PDF

Phylogenomic approaches have the potential to improve confidence about the inter-relationships of species in the order Mucorales within the fungal tree of life. species are especially important as plant and animal pathogens and bioindustrial fermenters for food and metabolite production. A dataset of 192 orthologous genes was used to construct a phylogenetic tree of 21 strains, classified into four species isolated from habitats of industrial, medical and environmental importance.

View Article and Find Full Text PDF

Transposable elements (TEs) shape genomes via recombination and transposition, lead to chromosomal rearrangements, create new gene neighborhoods, and alter gene expression. They play key roles in adaptation either to symbiosis in Amanita genus or to pathogenicity in Pyrenophora tritici-repentis. Despite growing evidence of their importance, the abundance and distribution of mobile elements replicating in a "cut-and-paste" fashion is barely described so far.

View Article and Find Full Text PDF

The His-Me finger endonucleases, also known as HNH or ββα-metal endonucleases, form a large and diverse protein superfamily. The His-Me finger domain can be found in proteins that play an essential role in cells, including genome maintenance, intron homing, host defense and target offense. Its overall structural compactness and non-specificity make it a perfectly-tailored pathogenic module that participates on both sides of inter- and intra-organismal competition.

View Article and Find Full Text PDF

Fungi are able to switch between different lifestyles in order to adapt to environmental changes. Their ecological strategy is connected to their secretome as fungi obtain nutrients by secreting hydrolytic enzymes to their surrounding and acquiring the digested molecules. We focus on fungal serine proteases (SPs), the phylogenetic distribution of which is barely described so far.

View Article and Find Full Text PDF

PIN-like domains constitute a widespread superfamily of nucleases, diverse in terms of the reaction mechanism, substrate specificity, biological function and taxonomic distribution. Proteins with PIN-like domains are involved in central cellular processes, such as DNA replication and repair, mRNA degradation, transcription regulation and ncRNA maturation. In this work, we identify and classify the most complete set of PIN-like domains to provide the first comprehensive analysis of sequence-structure-function relationships within the whole PIN domain-like superfamily.

View Article and Find Full Text PDF

Exotoxin A (PE) from is a bacterial ADP-ribosyltransferase, which can permanently inhibit translation in the attacked cells. Consequently, this toxin is frequently used in immunotoxins for targeted cancer therapies. In this study, we propose a novel modification to PE by incorporating the NLS sequence at its -terminus, to make it a selective agent against fast-proliferating cancer cells, as a nucleus-accumulated toxin should be separated from its natural substrate (eEF2) in slowly dividing cells.

View Article and Find Full Text PDF

FAM46 proteins, encoded in all known animal genomes, belong to the nucleotidyltransferase (NTase) fold superfamily. All four human FAM46 paralogs (FAM46A, FAM46B, FAM46C, FAM46D) are thought to be involved in several diseases, with FAM46C reported as a causal driver of multiple myeloma; however, their exact functions remain unknown. By using a combination of various bioinformatics analyses (e.

View Article and Find Full Text PDF

Ribonuclease H-like (RNHL) superfamily, also called the retroviral integrase superfamily, groups together numerous enzymes involved in nucleic acid metabolism and implicated in many biological processes, including replication, homologous recombination, DNA repair, transposition and RNA interference. The RNHL superfamily proteins show extensive divergence of sequences and structures. We conducted database searches to identify members of the RNHL superfamily (including those previously unknown), yielding >60 000 unique domain sequences.

View Article and Find Full Text PDF

Retrotransposons with a tyrosine recombinase (YR) have been discovered recently and lack thorough annotation in fungi. YR retrotransposons are divided into 3 groups: DIRS, Ngaro and VIPER (known only from kinetoplastida). We used comparative genomics to investigate the evolutionary patterns of retrotransposons in the fungal kingdom.

View Article and Find Full Text PDF

Although the human mitochondrial genome has been investigated for several decades, the proteins responsible for its replication and expression, especially nucleolytic enzymes, are poorly described. Here, we characterized a novel putative PD-(D/E)XK nuclease encoded by the human C20orf72 gene named Ddk1 for its predicted catalytic residues. We show that Ddk1 is a mitochondrially localized metal-dependent DNase lacking detectable ribonuclease activity.

View Article and Find Full Text PDF

Proteins belonging to PD-(D/E)XK phosphodiesterases constitute a functionally diverse superfamily with representatives involved in replication, restriction, DNA repair and tRNA-intron splicing. Their malfunction in humans triggers severe diseases, such as Fanconi anemia and Xeroderma pigmentosum. To date there have been several attempts to identify and classify new PD-(D/E)KK phosphodiesterases using remote homology detection methods.

View Article and Find Full Text PDF