Publications by authors named "Kamil Pabis"

Article Synopsis
  • Lifespan extension is traditionally used to evaluate aging interventions, but this method has limitations, particularly when control group lifespans are short, leading to overstated effectiveness.
  • Statistical issues and the rarity of independent replications in mouse studies can skew results, making it hard to trust findings from a single study.
  • The authors suggest using a "900-day rule," which indicates that for an intervention to be credible, control lifespans should be around 900 days, and treated groups should significantly surpass this, to help identify promising longevity treatments.
View Article and Find Full Text PDF

Clocks that measure biological age should predict all-cause mortality and give rise to actionable insights to promote healthy aging. Here we applied dimensionality reduction by principal component analysis to clinical data to generate a clinical aging clock (PCAge) identifying signatures (principal components) separating healthy and unhealthy aging trajectories. We found signatures of metabolic dysregulation, cardiac and renal dysfunction and inflammation that predict unsuccessful aging, and we demonstrate that these processes can be impacted using well-established drug interventions.

View Article and Find Full Text PDF

Aging and senescence are characterized by pervasive transcriptional dysfunction, including increased expression of transposons and introns. Our aim was to elucidate mechanisms behind this increased expression. Most transposons are found within genes and introns, with a large minority being close to genes.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) deletions which clonally expand in skeletal muscle of patients with mtDNA maintenance disorders, impair mitochondrial oxidative phosphorylation dysfunction. Previously we have shown that these mtDNA deletions arise and accumulate in perinuclear mitochondria causing localised mitochondrial dysfunction before spreading through the muscle fibre. We believe that mito-nuclear signalling is a key contributor in the accumulation and spread of mtDNA deletions, and that knowledge of how muscle fibres respond to mitochondrial dysfunction is key to our understanding of disease mechanisms.

View Article and Find Full Text PDF

Cadmium (Cd) accumulates with aging and is elevated in long-lived species. Metallothioneins (MTs), small cysteine-rich proteins involved in metal homeostasis and Cd detoxification, are known to be related to longevity. However, the relationship between Cd accumulation, the role of MTs, and aging is currently unclear.

View Article and Find Full Text PDF

The "theory of resistant biomolecules" posits that long-lived species show resistance to molecular damage at the level of their biomolecules. Here, we test this hypothesis in the context of mitochondrial DNA (mtDNA) as it implies that predicted mutagenic DNA motifs should be inversely correlated with species maximum lifespan (MLS). First, we confirmed that guanine-quadruplex and direct repeat (DR) motifs are mutagenic, as they associate with mtDNA deletions in the human major arc of mtDNA, while also adding mirror repeat (MR) and intramolecular triplex motifs to a growing list of potentially mutagenic features.

View Article and Find Full Text PDF

Mitochondria are key organelles for cellular metabolism, and regulate several processes including cell death and macroautophagy/autophagy. Here, we show that mitochondrial respiratory chain (RC) deficiency deactivates AMP-activated protein kinase (AMPK, a key regulator of energy homeostasis) signaling in tissue and in cultured cells. The deactivation of AMPK in RC-deficiency is due to increased expression of the AMPK-inhibiting protein FLCN (folliculin).

View Article and Find Full Text PDF

Epidemiologic studies suggest that exposure to Cd is related to a multitude of age-related diseases. There is evidence that Cd toxicity emerges from an interference with Zn metabolism as they compete for the same binding sites of ligands. The most responsive proteins to Cd exposure are the metal-binding proteins termed metallothioneins (MTs), which display a much greater affinity for Cd than for Zn.

View Article and Find Full Text PDF

Objective: In patients with mitochondrial DNA (mtDNA) maintenance disorders and with aging, mtDNA deletions sporadically form and clonally expand within individual muscle fibers, causing respiratory chain deficiency. This study aimed to identify the sub-cellular origin and potential mechanisms underlying this process.

Methods: Serial skeletal muscle cryosections from patients with multiple mtDNA deletions were subjected to subcellular immunofluorescent, histochemical, and genetic analysis.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session2vbgv1155pbgnusa5hrtutl5mcdu9tb2): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once