Publications by authors named "Kamil Gareev"

This study addresses issues in developing spatially controlled magnetic fields for particle guidance, synthesizing biocompatible and chemically stable MNPs and enhancing their specificity to pathological cells through chemical modifications, developing personalized adjustments, and highlighting the potential of tumor-on-a-chip systems, which can simulate tissue environments and assess drug efficacy and dosage in a controlled setting. The research focused on two MNP types, uncoated magnetite nanoparticles (mMNPs) and carboxymethyl dextran coated superparamagnetic nanoparticles (CD-SPIONs), and evaluated their transport properties in microfluidic systems and porous media. The original uncoated mMNPs of bimodal size distribution and the narrow size distribution of the fractions (23 nm and 106 nm by radii) were demonstrated to agglomerate in magnetically driven microfluidic flow, forming a stable stationary web consisting of magnetic fibers within 30 min.

View Article and Find Full Text PDF

Acute and requiring attention problem of oncotheranostics is a necessity for the urgent development of operative and precise diagnostics methods, followed by efficient therapy, to significantly reduce disability and mortality of citizens. A perspective way to achieve efficient personalized treatment is to use methods for operative evaluation of the individual drug load, properties of specific tumors and the effectiveness of selected therapy, and other actual features of pathology. Among the vast diversity of tumor types-brain tumors are the most invasive and malignant in humans with poor survival after diagnosis.

View Article and Find Full Text PDF

Over the past several decades, nanocarriers have demonstrated diagnostic and therapeutic (i.e., theranostic) potencies in translational oncology, and some agents have been further translated into clinical trials.

View Article and Find Full Text PDF

Magnetic nanocarriers have attracted attention in translational oncology due to their ability to be employed both for tumor diagnostics and therapy. This review summarizes data on applications of synthetic and biogenic magnetic nanoparticles (MNPs) in oncological theranostics and related areas. The basics of both types of MNPs including synthesis approaches, structure, and physicochemical properties are discussed.

View Article and Find Full Text PDF

Biomimetic nanomaterials (BNMs) are functional materials containing nanoscale components and having structural and technological similarities to natural (biogenic) prototypes. Despite the fact that biomimetic approaches in materials technology have been used since the second half of the 20th century, BNMs are still at the forefront of materials science. This review considered a general classification of such nanomaterials according to the characteristic features of natural analogues that are reproduced in the preparation of BNMs, including biomimetic structure, biomimetic synthesis, and the inclusion of biogenic components.

View Article and Find Full Text PDF

In this study, the magnetic properties of magnetosomes isolated from lyophilized magnetotactic bacteria SO-1 were assessed for the first time. The shape and size of magnetosomes and cell fragments were studied by electron microscopy and dynamic light scattering techniques. Phase and elemental composition were analyzed by X-ray and electron diffraction and Raman spectroscopy.

View Article and Find Full Text PDF

Background: A promising approach to solve the problem of cytostatic toxicity is targeted drug transport using magnetic nanoparticles (MNPs).

Purpose: To use calculation to determine the optimal characteristics of the magnetic field for controlling MNPs in the body, and to evaluate the efficiency of magnetically controlled delivery of MNPs in vitro and in vivo to a tumour site in mice.

Material And Methods: For the in vitro study, reference MNPs were used, while for in vivo studies, MNPs coated in polylactide including fluorescent indocyanine (MNPs-ICG) were used.

View Article and Find Full Text PDF

Magnetic iron oxide nanoparticles (IONP) present the promising instrument for broad-spectrum of clinical applications, for example, targeted drug delivery. Reactivity of nanoparticles depends on their surface area and material. In the blood plasma IONP are getting covered with an albumin crown, so it was decided to test this shell for biocompatibility.

View Article and Find Full Text PDF
Article Synopsis
  • Over the past ten years, magnetic iron oxide nanoparticles (IONPs) have gained interest for biomedical use, but safety concerns about their effects on cells remain significant.
  • This study examined the impact of various types of IONPs on human umbilical vein endothelial cells over 48 hours, measuring cell viability, apoptosis, and morphology with specific assays and microscopy techniques.
  • Results indicated that higher doses of IONPs lead to increased cell damage, including binucleated cells due to impaired cell division, with composite types showing higher toxicity, while bare IONPs were less harmful.
View Article and Find Full Text PDF