Chaperone dependency of cancer cells is an emerging trait that relates to the need of transformed cells to cope with the various stresses associated with the malignant state. URI1 (unconventional prefoldin RPB5 interactor 1) encodes a member of the prefoldin (PFD) family of molecular chaperones that acts as part of a heterohexameric PFD complex, the URI1 complex (URI1C), to promote assembly of multiprotein complexes involved in cell signaling and transcription processes. Here, we report that human colorectal cancer (CRCs) cell lines demonstrate differential dependency on URI1 and on the URI1 partner PFD STAP1 for survival, suggesting that this differential vulnerability of CRC cells is directly linked to URI1C chaperone function.
View Article and Find Full Text PDFThe ability to predict the future behavior of an individual cancer is crucial for precision cancer medicine. The discovery of extensive intratumor heterogeneity and ongoing clonal adaptation in human tumors substantiated the notion of cancer as an evolutionary process. Random events are inherent in evolution and tumor spatial structures hinder the efficacy of selection, which is the only deterministic evolutionary force.
View Article and Find Full Text PDFGenomic DNA libraries are a valuable source of large constructs that can contain all the regulatory elements necessary for recapitulating wild-type gene expression when introduced into animal genomes as a transgene. Such clones can be directly used in complementation studies. In combination with recombineering manipulation, the tagged genomic clones can serve as faithful in vivo gene activity reporters that enable studies of tissue specificity of gene expression, subcellular protein localization, and affinity purification of complexes.
View Article and Find Full Text PDFPentatricopeptide repeat (PPR) proteins are the largest known RNA-binding protein family, and are found in all eukaryotes, being particularly abundant in higher plants. PPR proteins localize mostly to mitochondria and chloroplasts, and many were shown to modulate organellar genome expression on the posttranscriptional level. Although the genomes of land plants encode hundreds of PPR proteins, only a few have been identified in Fungi and Metazoa.
View Article and Find Full Text PDFPentatricopeptide repeat (PPR) proteins form the largest known RNA-binding protein family and are found in all eukaryotes, being particularly abundant in higher plants. PPR proteins localize mostly in mitochondria and chloroplasts, where they modulate organellar genome expression on the post-transcriptional level. The Saccharomyces cerevisiae DMR1 (CCM1, YGR150C) encodes a PPR protein that localizes to mitochondria.
View Article and Find Full Text PDFAs a legacy of their endosymbiotic eubacterial origin, mitochondria possess a residual genome, encoding only a few proteins and dependent on a variety of factors encoded by the nuclear genome for its maintenance and expression. As a facultative anaerobe with well understood genetics and molecular biology, Saccharomyces cerevisiae is the model system of choice for studying nucleo-mitochondrial genetic interactions. Maintenance of the mitochondrial genome is controlled by a set of nuclear-coded factors forming intricately interconnected circuits responsible for replication, recombination, repair and transmission to buds.
View Article and Find Full Text PDFWe generated two complementary genomic fosmid libraries for Drosophila melanogaster and Drosophila pseudoobscura that permit seamless modification of large genomic clones by high-throughput recombineering and direct transgenesis. The fosmid transgenes recapitulated endogenous gene expression patterns. These libraries, in combination with recombineering technology, will be useful to rescue mutant phenotypes, allow imaging of gene products in living flies and enable systematic analysis and manipulation of gene activity across species.
View Article and Find Full Text PDF