Biological testing on the International Space Station (ISS) is necessary in order to monitor the microbial burden and identify risks to crew health. With support from a NASA Phase I Small Business Innovative Research contract, we have developed a compact prototype of a microgravity-compatible, automated versatile sample preparation platform (VSPP). The VSPP was built by modifying entry-level 3D printers that cost USD 200-USD 800.
View Article and Find Full Text PDFTraditionally, the majority of nucleic acid amplification-based molecular diagnostic tests are done in centralized settings. In recent years, point-of-care tests have been developed for use in low-resource settings away from central laboratories. While most experts agree that point-of-care molecular tests are greatly needed, their availability as cost-effective and easy-to-operate tests remains an unmet goal.
View Article and Find Full Text PDFReal-time PCR assays have recently been implemented in diagnostics for many bacterial pathogens, allowing rapid and accurate detection, which ultimately results in improved clinical intervention. Here, we describe a sensitive method of detection for three common tick-borne pathogens Borrelia burgdorferi, Anaplasma phagocytophilum, and Babesia microti since coinfections with these pathogens have started occurring with increasing frequency over the last several years in both North America and Europe. A shared geographic region, the same tick vectors, and similar transmission cycle all favor simultaneous transmission of these three tick-borne pathogens.
View Article and Find Full Text PDFZika virus (ZIKV) has gained global attention as an etiologic agent of fetal microcephaly and Guillain-Barré syndrome. Existing immuno-based rapid tests often fail to distinguish between Zika and related flaviviruses that are common in affected regions of Central and South Americas and the Caribbean. The US CDC and qualified state health department laboratories can perform the reverse transcription polymerase chain reaction (RT-PCR) ZIKV test using highly sophisticated instruments with long turnaround times.
View Article and Find Full Text PDFMost molecular diagnostic assays require upfront sample preparation steps to isolate the target's nucleic acids, followed by its amplification and detection using various nucleic acid amplification techniques. Because molecular diagnostic methods are generally rather difficult to perform manually without highly trained users, automated and integrated systems are highly desirable but too costly for use at point-of-care or low-resource settings. Here, we showcase the development of a low-cost and rapid nucleic acid isolation and amplification platform by modifying entry-level 3D printers that cost between $400 and $750.
View Article and Find Full Text PDFThe ability of Treponema pallidum, the syphilis spirochete to colonize various tissues requires the presence of surface-exposed adhesins that have been difficult to identify due to the inability to culture and genetically manipulate T. pallidum. Using a Borrelia burgdorferi-based heterologous system and gain-in-function approach, we show for the first time that a highly immunogenic lipoprotein TP0435 can be differentially processed into multiple isoforms with one variant stochastically displayed on the spirochete surface.
View Article and Find Full Text PDFWe introduce a portable biochemical analysis platform for rapid field deployment of nucleic acid-based diagnostics using consumer-class quadcopter drones. This approach exploits the ability to isothermally perform the polymerase chain reaction (PCR) with a single heater, enabling the system to be operated using standard 5 V USB sources that power mobile devices (via battery, solar, or hand crank action). Time-resolved fluorescence detection and quantification is achieved using a smartphone camera and integrated image analysis app.
View Article and Find Full Text PDFThe ability to make rapid diagnosis of infectious diseases broadly available in a portable, low-cost format would mark a great step forward in global health. Many molecular diagnostic assays are developed based on using thermal cyclers to carry out polymerase chain reaction (PCR) and reverse-transcription PCR for DNA and RNA amplification and detection, respectively. Unfortunately, most commercial thermal cyclers are expensive and need continuous electrical power supply, so they are not suitable for uses in low-resource settings.
View Article and Find Full Text PDFBackground: Many modern molecular diagnostic assays targeting nucleic acids are typically confined to developed countries or to the national reference laboratories of developing-world countries. The ability to make technologies for the rapid diagnosis of infectious diseases broadly available in a portable, low-cost format would mark a revolutionary step forward in global health. Many molecular assays are also developed based on polymerase chain reactions (PCR), which require thermal cyclers that are relatively heavy (>20 pounds) and need continuous electrical power.
View Article and Find Full Text PDFLyme disease is the most prevalent tick-borne disease in North America and Europe. The causative agent, Borrelia burgdorferi persists in the white-footed mouse. Infection with B.
View Article and Find Full Text PDFBackground: The infection with Borrelia burgdorferi can result in acute to chronic Lyme disease. In addition, coinfection with tick-borne pathogens, Babesia species and Anaplasma phagocytophilum has been increasing in endemic regions of the USA and Europe. The currently used serological diagnostic tests are often difficult to interpret and, moreover, antibodies against the pathogens persist for a long time making it difficult to confirm the cure of the disease.
View Article and Find Full Text PDFBackground: Lyme disease in the United States is caused primarily by B. burgdorferi sensu stricto while other species are also prevalent in Europe. Genetic techniques have identified several chromosomal and plasmid-borne regulatory and virulence factors involved in Lyme pathogenesis.
View Article and Find Full Text PDFBorrelia burgdorferi sensu stricto is the major causative agent of Lyme disease in the United States, while B. garinii and B. afzelii are more prevalent in Europe.
View Article and Find Full Text PDFPrevious multilocus sequence typing studies of Campylobacter coli from meat animals identified an unusual cluster of strains, primarily from turkeys, termed "cluster II" and characterized by the presence of the C. jejuni aspA103 allele. To characterize the extent of genomic input from C.
View Article and Find Full Text PDFCertain Campylobacter strains harbor a transcribed intervening sequence (IVS) in their 23S rRNA genes. Following transcription, the IVS is excised, leading to fragmentation of the 23S rRNA. The origin and possible functions of the IVS are unknown.
View Article and Find Full Text PDF