An analytical approach to the theory of electromagnetic waves in nonlinear vacuum is developed. The evolution of the pulse is governed by a system of nonlinear wave vector equations. An exact solution with its own angular momentum in the form of a shock wave is obtained.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
September 2008
We present a systematic study of linear propagation of ultrashort laser pulses in media with dispersion, dispersionless media, and vacuum. The applied method of amplitude envelopes makes it possible to estimate the limits of the slowly varying amplitude approximation and to describe an amplitude integrodifferential equation governing propagation of optical pulses in the single-cycle regime in solids. The well-known slowly varying amplitude equation and the amplitude equation for the vacuum case are written in dimensionless form.
View Article and Find Full Text PDF