Publications by authors named "Kamel Madi"

The classification of deformable protein shapes, based solely on their macromolecular surfaces, is a challenging problem in protein-protein interaction prediction and protein design. Shape classification is made difficult by the fact that proteins are dynamic, flexible entities with high geometrical complexity. In this paper, we introduce a novel description for such deformable shapes.

View Article and Find Full Text PDF

The purpose of this study was to investigate growth plate dynamics in surgical and loading murine models of osteoarthritis, to understand whether abnormalities in these dynamics are associated with osteoarthritis development. 8-week-old C57BL/6 male mice underwent destabilisation of medial meniscus (DMM) ( 8) surgery in right knee joints. Contralateral left knee joints had no intervention (controls).

View Article and Find Full Text PDF

Imaging techniques for quantifying changes in the hierarchical structure of deforming joints are constrained by destructive sample treatments, sample-size restrictions and lengthy scan times. Here, we report the use of fast low-dose pink-beam synchrotron X-ray tomography in combination with mechanical loading at nanometric precision for in situ imaging, at resolutions below 100 nm, of the mechanical strain in intact untreated joints under physiologically realistic conditions. We show that in young, older and osteoarthritic mice, hierarchical changes in tissue structure and mechanical behaviour can be simultaneously visualized, and that the tissue structure at the cellular level correlates with the mechanical performance of the whole joint.

View Article and Find Full Text PDF

Adipose models have been applied to mechanistic studies of metabolic diseases (such as diabetes) and the subsequent discovery of new therapeutics. However, typical models are either insufficiently complex (2D cell cultures) or expensive and labor intensive (mice/in vivo). To bridge the gap between these models and in order to better inform pre-clinical studies we have developed a drug-responsive 3D model of white adipose tissue (WAT).

View Article and Find Full Text PDF

The epiphyseal growth plate is a developmental region responsible for linear bone growth, in which chondrocytes undertake a tightly regulated series of biological processes. Concomitant with the cessation of growth and sexual maturation, the human growth plate undergoes progressive narrowing, and ultimately disappears. Despite the crucial role of this growth plate fusion "bridging" event, the precise mechanisms by which it is governed are complex and yet to be established.

View Article and Find Full Text PDF

A correlative imaging methodology was developed to accurately quantify bone formation in the complex lattice structure of additive manufactured implants. Micro computed tomography (μCT) and histomorphometry were combined, integrating the best features from both, while demonstrating the limitations of each imaging modality. This semi-automatic methodology registered each modality using a coarse graining technique to speed the registration of 2D histology sections to high resolution 3D μCT datasets.

View Article and Find Full Text PDF