Publications by authors named "Kamel Hamrouni"

Background And Objective: Accurate mass segmentation in mammographic images is a critical requirement for computer-aided diagnosis systems since it allows accurate feature extraction and thus improves classification precision.

Methods: In this paper, a novel automatic breast mass segmentation approach is presented. This approach consists of mainly three stages: contour initialization applied to a given region of interest; construction of fuzzy contours and estimation of fuzzy membership maps of different classes in the considered image; integration of these maps in the Chan-Vese model to get a fuzzy-energy based model that is used for final delineation of mass.

View Article and Find Full Text PDF

Medical imaging modalities such as computed tomography (CT) combined with computer-aided diagnostic processing have already become important part of clinical routine specially for pleural diseases. The segmentation of the thoracic cavity represents an extremely important task in medical imaging for different reasons. Multiple features can be extracted by analyzing the thoracic cavity space and these features are signs of pleural diseases including the malignant pleural mesothelioma (MPM) which is the main focus of our research.

View Article and Find Full Text PDF

Female breast cancer is the second most common cancer in the world. Several efforts in artificial intelligence have been made to help improving the diagnostic accuracy at earlier stages. However, the identification of breast abnormalities, like masses, on mammographic images is not a trivial task, especially for dense breasts.

View Article and Find Full Text PDF