Publications by authors named "Kamel Charaabi"

The sterile insect technique (SIT) remains a successful approach in managing pest insects. However, the long-term mass rearing and sterilizing radiation associated with SIT have been observed to induce physiological and ecological fitness decline in target insects. This decline may be attributed to various factors, including commensal microbiota dysbiosis, selection procedures, loss of heterozygosity, and other complex interactions.

View Article and Find Full Text PDF

The medfly Ceratitis capitata is one of the most damaging fruit pests with quarantine significance due to its extremely wide host range. The use of entomopathogenic fungi constitutes a promising approach with potential applications in integrated pest management. Furthermore, developing insect control methods can involve the use of fungal machinery to cause metabolic disruption, which may increase its effectiveness by impairing insect development.

View Article and Find Full Text PDF

Ceratitis capitata (medfly) is one of the most devastating crop pests worldwide. The Sterile Insect Technique (SIT) is a control method that is based on the mass rearing of males, their sterilization, and release in the field. However, the effectiveness of the technique depends on the quality of the released males and their fitness.

View Article and Find Full Text PDF
Article Synopsis
  • The aphid Myzus persicae is a major agricultural pest known for quickly developing resistance to insecticides, making it a challenge for farmers.
  • Researchers generated a comprehensive genome assembly and sequenced over 110 clonal lines from worldwide populations to study the genetic basis of this resistance.
  • The study found significant genetic diversity in resistance mutations influenced by the aphid's host plants, revealing both repeated mutations at the same genetic locus and new resistance mechanisms, which can inform better pest control strategies.
View Article and Find Full Text PDF

The Mediterranean fruit fly (medfly) Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), is often referred to as the most severe agricultural pest. Its biological control is mainly through the Sterile Insect Technique (SIT). Colonization, mass-rearing conditions and the irradiation process impact the competitiveness of sterile males and disrupt symbiotic associations by favoring some bacterial species and suppressing others.

View Article and Find Full Text PDF
Article Synopsis
  • The R81T mutation, which leads to resistance against neonicotinoid insecticides in the aphid species Myzus persicae, has spread notably through southern Europe and was recently studied in Tunisia.
  • In Tunisia, the mutation was found at significant levels (32-55%) in northern regions but was less common in the south, appearing in aphids from key crops like peach, potato, and tomato.
  • This finding marks the first detection of the R81T mutation in North Africa and highlights a threat to effective aphid control, necessitating further research into the management of resistant populations.
View Article and Find Full Text PDF

Background: We used molecular assays to diagnose resistance to pyrethroids and pirimicarb in samples of Myzus persicae from field crops or an insect suction trap in Tunisia. Genotypes for resistance loci were related to ones for polymorphic microsatellite loci in order to investigate breeding systems and patterns of genetic diversity, and to inform resistance management tactics.

Results: The kdr mutation L1014F conferring pyrethroid resistance was found in all samples.

View Article and Find Full Text PDF