The sterile insect technique (SIT) remains a successful approach in managing pest insects. However, the long-term mass rearing and sterilizing radiation associated with SIT have been observed to induce physiological and ecological fitness decline in target insects. This decline may be attributed to various factors, including commensal microbiota dysbiosis, selection procedures, loss of heterozygosity, and other complex interactions.
View Article and Find Full Text PDFThe medfly Ceratitis capitata is one of the most damaging fruit pests with quarantine significance due to its extremely wide host range. The use of entomopathogenic fungi constitutes a promising approach with potential applications in integrated pest management. Furthermore, developing insect control methods can involve the use of fungal machinery to cause metabolic disruption, which may increase its effectiveness by impairing insect development.
View Article and Find Full Text PDFCeratitis capitata (medfly) is one of the most devastating crop pests worldwide. The Sterile Insect Technique (SIT) is a control method that is based on the mass rearing of males, their sterilization, and release in the field. However, the effectiveness of the technique depends on the quality of the released males and their fitness.
View Article and Find Full Text PDFThe Mediterranean fruit fly (medfly) Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), is often referred to as the most severe agricultural pest. Its biological control is mainly through the Sterile Insect Technique (SIT). Colonization, mass-rearing conditions and the irradiation process impact the competitiveness of sterile males and disrupt symbiotic associations by favoring some bacterial species and suppressing others.
View Article and Find Full Text PDFBackground: We used molecular assays to diagnose resistance to pyrethroids and pirimicarb in samples of Myzus persicae from field crops or an insect suction trap in Tunisia. Genotypes for resistance loci were related to ones for polymorphic microsatellite loci in order to investigate breeding systems and patterns of genetic diversity, and to inform resistance management tactics.
Results: The kdr mutation L1014F conferring pyrethroid resistance was found in all samples.