Recent developments in sequencing technology and analytical approaches have allowed researchers to show that the healthy gut microbiome is very varied and capable of performing a wide range of tasks. The importance of gut microbiota in controlling immunological, neurological, and endocrine function is becoming well-recognized. Thereby, numerous inflammatory diseases, including those that impact the gastrointestinal system, as well as less obvious ones, including Rheumatoid arthritis (RA), cancer, gestational diabetes (GD), type 1 diabetes (T1D), and type 2 diabetes (T2D), have been linked to dysbiotic gut microbiota.
View Article and Find Full Text PDFHumans have a complicated symbiotic relationship with their gut microbiome, which is postulated to impact host health and disease broadly. Epigenetic alterations allow host cells to regulate gene expression without altering the DNA sequence. The gut microbiome, offering environmental hints, can influence responses to stimuli by host cells with modifications on their epigenome and gene expression.
View Article and Find Full Text PDFMicroRNAs (miRNAs), small non-coding RNAs approximately 20-25 nt in length, play important roles via directly binding to the corresponding 3' UTR of target mRNAs. Recent research has shown that miRNAs cover a wide range of diseases, including several types of cancer. It is interesting to note that miR-206 operates as a tumor suppressor and is downregulated in abundant cancer types, such as breast cancer, lung cancer, colorectal cancer, and so forth.
View Article and Find Full Text PDFDiabetes mellitus (DM) has been the most prevalent global metabolic disease, turning into a serious risk for human health. Several researches have recorded a role for inflammation and immunity in the pathogenesis of both in T1DM and in T2DM. Lots of chemical agents are available to control and to cure diabetic patients, which are not always sufficient for euglycemia maintenance and late stage diabetic complications avoidance.
View Article and Find Full Text PDFBackground: Carbamoyl phosphate synthetase 1 (CPS1) is a liver-specific enzyme with the lowest enzymatic rate, which determines the overall rate of the other reactions in the pathway that converts ammonia to carbamoyl phosphate in the first step of the urea cycle. Carbamoyl phosphate synthetase 1 deficiency (CPS1D), which usually presents as lethal hyperammonemia, is a rare autosomal recessive hereditary disease.
Case: We report a case of a two-day-old female neonate with lethal hyperammonemia.