In this paper, we consider new quantum mechanisms for selective detection in complex gaseous media which provide the highest possible efficiency of quantum sensors and for the first time analyze their nature. On the basis of these quantum mechanisms, the concepts of quantum detection and innovative methods of analysis are developed, which are virtually impossible to implement in the conventional conductive sensors and nanosensors. Examples of original solutions to problems in the field of detection and analysis of human breath using point-contact sensors are considered.
View Article and Find Full Text PDFQuantum structures are ideal objects by which to discover and study new sensor mechanisms and implement advanced approaches in sensor analysis to develop innovative sensor devices. Among them, one of the most interesting representatives is the Yanson point contact. It allows the implementation of a simple technological chain to activate the quantum mechanisms of selective detection in gaseous and liquid media.
View Article and Find Full Text PDFSignificant progress in development of noninvasive diagnostic tools based on breath analysis can be expected if one employs a real-time detection method based on finding a spectral breath profile which would contain some energy characteristics of the analyzed gas mixture. Using the fundamental energy parameters of a quantum system, it is possible to determine with a high accuracy its quantitative and qualitative composition. Among the most efficient tools to measure energy characteristics of quantum systems are sensors based on Yanson point contacts.
View Article and Find Full Text PDFOf all modern nanosensors using the principle of measuring variations in electric conductance, point-contact sensors stand out in having a number of original sensor properties not manifested by their analogues. The nontrivial nature of point-contact sensors is based on the unique properties of Yanson point contacts used as the sensing elements. The quantum properties of Yanson point contacts enable the solution of some of the problems that could not be solved using conventional sensors measuring conductance.
View Article and Find Full Text PDFState-of-the-art methods for non-invasive detection of the Helicobacter pylori (H. pylori) infection have been considered. A reported global tendency towards a non-decreasing prevalence of H.
View Article and Find Full Text PDFThis work describes the gas-sensitive properties of a one-dimensional organic conductor before and after exposure to carbon monoxide and human breath. A sensitive material, an anion-radical salt of tetracyanoquinodimethane, has been investigated by infrared spectroscopy and electrical resistivity measurements. Drastic spectral and electrical changes are found after gas exposure showing that the compound interacts strongly with human breath, carbon monoxide, and ammonia.
View Article and Find Full Text PDF