The presence of pharmaceutically active compounds (PhAcs) in water bodies is a major concern due to their persistence, biological activity, and detrimental environmental effects. The present study focuses on the application of pulsed corona plasma technology to degrade such compounds. Three different plasma reactors, namely, sequential flow plasma reactor (SFR), continuous flow top discharge plasma reactor (TDPR) and continuous flow side discharge plasma reactor (SDPR), are designed and fabricated for their performance evaluation with respect to PhAC degradation.
View Article and Find Full Text PDFPharmaceutically active compounds (PhACs) present in the environment are a great threat to human well-being and the ecosystem. Eventhough recognized as the pharmacy of the world", studies addressing the distribution of PhACs in the Indian environment are scarce. Hence, in the current study, selected PhACs, heavy metals (HMs), and physicochemical parameters (PCPs) were measured from the surface waters of the River Cauvery during the pre- and post-monsoon.
View Article and Find Full Text PDFThis study presents the orange peel activated carbon (OPAC), derived from biowaste precursor (orange peel) by single step pyrolysis method and its application for the adsorption of chlorophenoxyacetic acid herbicides from the water. The OPAC exhibited the surface area of 592.471 m g, pore volume and pore diameter of 0.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2013
A batch adsorption process was applied to investigate the removal of manganese from aqueous solution by oxidized multiwalled carbon nanotubes (MWCNTs). In doing so, the thermodynamic, adsorption isotherm, and kinetic studies were also carried out. MWCNT with 5-10-nm outer diameter, surface area of 40-600 m(2)/g, and purity above 95 % was used as an adsorbent.
View Article and Find Full Text PDFUnlabelled: PURPOSE AND AIM: In general, direct current (DC) is used in an electrocoagulation processes. In this case, an impermeable oxide layer may form on the cathode as well as corrosion formation on the anode due to oxidation. This prevents the effective current transfer between the anode and cathode, so the efficiency of electrocoagulation processes declines.
View Article and Find Full Text PDF