The study aims to elucidate the pharmacological mechanism of Rauvolfia tetraphylla against breast cancer through a comprehensive, multi-faceted approach. This includes molecular docking, molecular dynamics, and experimental validation. Initial screening via ADME analysis and network pharmacology identified key compounds and potential targets.
View Article and Find Full Text PDFVolumetric muscle loss (VML) presents a significant challenge in tissue engineering due to the irreparable nature of extensive muscle injuries. In this study, we propose a novel approach for VML treatment using a bioink composed of silk microfiber-reinforced silk fibroin (SF) hydrogel. The engineered scaffolds are predesigned to provide structural support and fiber alignment to promote tissue regeneration in situ.
View Article and Find Full Text PDFDiabetic foot ulcers (DFUs) are a significant challenge in the clinical care of diabetic patients, often necessitating limb amputation and compromising the quality of life and life expectancy of this cohort. Minimally invasive therapies, such as modular scaffolds, are at the forefront of current DFU treatment, offering an efficient approach for administering therapeutics that accelerate tissue repair and regeneration. In this study, we report a facile method for fabricating granular nanofibrous microspheres (NMs) with predesigned structures and porosities.
View Article and Find Full Text PDFEnviron Geochem Health
August 2024
In the era dominated by plastic, the widespread use of plastic in our daily lives has led to a growing accumulation of its degraded byproducts, such as microplastics and plastic additives like Bisphenol A (BPA). BPA is recognized as one of the earliest man-made substances that exhibit endocrine-disrupting properties. It is frequently employed in the manufacturing of epoxy resins, polycarbonates, dental fillings, food storage containers, infant bottles, and water containers.
View Article and Find Full Text PDFRauvolfia tetraphylla is an essential medicinal plant that has been widely used in traditional medicine for various disease treatments. However, the tumor suppressor activity of R. tetraphylla and its phytocompounds were not explored against triple-negative breast cancer.
View Article and Find Full Text PDFAccumulation of polycyclic aromatic hydrocarbons (PAH) poses significant dangers to the environment and human health. The advancement of technology for cleaning up PAH-contaminated environments is receiving more attention. Adsorption is the preferred and most favorable approach for cleaning up sediments polluted with PAH.
View Article and Find Full Text PDFPersonalized bone-regenerative materials have attracted substantial interest in recent years. Modern clinical settings demand the use of engineered materials incorporating patient-derived cells, cytokines, antibodies, and biomarkers to enhance the process of regeneration. In this work, we formulated short microfiber-reinforced hydrogels with platelet-rich fibrin (PRF) to engineer implantable multi-material core-shell bone grafts.
View Article and Find Full Text PDFElectrospinning technology has garnered wide attention over the past few decades in various biomedical applications including drug delivery, cell therapy, and tissue engineering. This technology can create nanofibers with tunable fiber diameters and functionalities. However, the 2D membrane nature of the nanofibers, as well as the rigidity and low porosity of electrospun fibers, lower their efficacy in tissue repair and regeneration.
View Article and Find Full Text PDFCyclodextrin (CD) and its derivatives are receiving attention as a new-generation adsorbent for water pollution treatment due to their external hydrophilic and internal hydrophobic properties. Among types of CD, β-Cyclodextrin (βCD) has been a material of choice with a proven track record for a range of utilities in distinct domains, owing to its unique cage-like structural conformations and inclusion complex-forming ability, especially to mitigate emerging contaminants (ECs). This article outlines βCD composites in developing approaches of their melds and composites for purposes such as membranes for removal of the ECs in aqueous setups have been explored with emphasis on recent trends.
View Article and Find Full Text PDFWounds were considered as defects in the tissues of the human skin and wound healing is said to be a tedious process as there are possibilities of infection or inflammation due to microorganisms. Modern moisture-retentive wound dressing (MMRWD) is opening a new window toward wound therapy. It comprises different types of wound dressing that has classified based on their functionality.
View Article and Find Full Text PDFEndocrine-disrupting chemicals (EDCs) have recently gained prominence as emerging pollutants due to their significant negative impacts on diverse living forms in ecosystems, including humans, by altering their endocrine systems. EDCs are a prominent category of emerging contaminants in various aquatic settings. Given the growing population and limited access to freshwater resources, their expulsion from aquatic systems is also a severe issue.
View Article and Find Full Text PDFJasminum sambac L. (J. sambac) belongs to the family Oleaceae and it is an ornamental subtropical evergreen shrub used in traditional treatments of certain ailments and diseases.
View Article and Find Full Text PDFThe current study investigates the effect of ethanolic extract of Salvinia cucullata (EESC) on growth, non-specific immune parameters, and disease resistance to Vibrio parahaemolyticus in Litopenaeus vannamei. The in-vitro cytotoxicity investigation was performed on shrimp hemolymph hemocytes to assess the toxicity and immunological responses with various concentrations of EESC, and no significant difference in cell viability was seen across dosages, but substantial changes in Phenol Oxidase (PO) and phagocytosis were reported. The in-vivo investigation was conducted on white shrimp for 56 days using varied amounts of 0 (control), 5 (EESC5), 10 (EESC10), and 20 (EESC20) g kg containing feeds and challenged against Vibrio parahaemolyticus.
View Article and Find Full Text PDFThe goal of the current study is to develop an extracellular matrix bioink that could mimic the biochemical components present in natural blood vessels. Here, we have used an innovative approach to recycle the discarded varicose vein for isolation of endothelial cells and decellularization of the same sample to formulate the decellularized extracellular matrix (dECM) bioink. The shift towards dECM bioink observed as varicose vein dECM provides the tissue-specific biochemical factors that will enhance the regeneration capability.
View Article and Find Full Text PDFThe focus point of this current work is to evaluate the anticancer and growth inhibitory efficacy of compounds 5α,8α-epidioxy-24ᶓ-methylcholesta-6,22-dien-3β-ol (LT1), and Ergosta-5,7,22-trien-3β-ol (LT2) of Lentinus tuberregium (Fr.) on three cell lines such as A673 (Rhabdomyosarcoma), MCF7 (breast cancer), and HCT116 (colorectal carcinoma) by MTT assay. LT1 and LT2 exerted maximal growth inhibition in the order as A673 > HCT116 > MCF7.
View Article and Find Full Text PDFBisphenol-A (BPA) is a monomer found in polycarbonate plastics, food cans, and other everyday chemicals; this monomer and its counterparts are widely used, culminating in its presence in water, soil, sediment, and the atmosphere. Furthermore, because of its estrogenic and genotoxic properties, it has been acknowledged as an endocrine disruptor; contamination of BPA in the environment is becoming a growing concern, and ways to effectively mitigate BPA from the environment are currently explored. Hence, the focal point of the review is to collate the bacterial degradation of BPA with the proposed degradation mechanism, explicitly focusing on researches published between 2017 and 2022.
View Article and Find Full Text PDFIn this study, the biosurfactants (Bio-SFs) producing bacteria are screened from the selected alkaline lake of Ethiopia, and the potential bacterial strain and their produced Bio-SFs are further characterized. In an initial screening, 25 bacterial isolates were isolated, and among those, the bacterial isolate assigned as CS1 was identified as the most potent producer of Bio-SFs using a subsequent characterization process. The CS1 strain was identified as Serratia sp.
View Article and Find Full Text PDFThe ever-exploding global population coupled with its anthropogenic impact has imparted unparalleled detrimental effects on the environment and mitigating them has emerged as the prime challenge and focus of the current century. The niche of nanotechnology empowered by composites of biopolymers in the handling of xenobiotics and environmental clean-up has an unlimited scope. The appositeness of biopolymer-nanoparticles (Bp-NPs) for environmental contaminant mitigation has received unique consideration due to its exclusive combination of physicochemical characteristics and other attributes.
View Article and Find Full Text PDFCarbon-centric adsorbents (CCA) are diverse forms, from simple biochar (BC) to graphene derivatives, carbon nanotubes (CNTs), and activated carbon (AC), which have been vastly explored for their removal of a plethora of pollutants, including heavy metals (HM). The prominent features of CCA are their operational attributes like extensive surface area, the occurrence of flexible surface functional groups, etc. This work offers a comprehensive examination of contemporary research on CCA for their superior metal removal aptitude and performances in simulated solutions and wastewater flows; via portraying the recent research advances as an outlook on the appliances of CACs for heavy metal adsorption for removal via distinct forms like AC, BC, Graphene oxide (GO), and CNTs.
View Article and Find Full Text PDFSemiconductor photocatalysis is thought to be a viable solution for addressing the growing problem of environmental pollution. Bismuth (Bi) metal oxides can function as a direct plasmonic photocatalyst or cocatalyst to accelerate the photogenerated charge separation and thus improve their photocatalytic activity. Hence, Bi-based photocatalysts have received a lot of attention due to their extensive environmental applications, including pollutant remediation and energy concepts.
View Article and Find Full Text PDFOsteochondral regeneration remains a vital problem in clinical situations affecting both bone and cartilage tissues due to the low regeneration ability of cartilage tissue. Additionally, the simultaneous regeneration of bone and cartilage is difficult to attain due to their dissimilar nature. Thus, fabricating a single scaffold for both bone and cartilage regeneration remains challenging.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2022
Human population growth, movement, and demand have a substantial impact on land use and land cover dynamics. Thematic maps of land use and land cover (LULC) serve as a reference for scrutinizing, source administration, and forecasting, making it easier to establish plans that balance preservation, competing uses, and growth compressions. This study aims to identify the changeover of land-use changes in the Bhavani basin for the two periods 2005 and 2015 and to forecast and establish potential land-use changes in the years 2025 and 2030 by using QGIS 2.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
December 2021
3D bioprinting technique renders a plausible solution to tissue engineering applications, mainly bone tissue regeneration, which could provide the microenvironment with desired physical, chemical, and mechanical properties. However, the mechanical and structural stability of current natural polymers is a critical issue in the fabrication of bone tissue-engineered scaffolds. To overcome these issues, we have developed 3D bioprintable semi-synthetic polymers derived from natural (sodium alginate, A) and synthetic (polyethylene glycol, PEG) biopolymers.
View Article and Find Full Text PDFMicroalgae have been publicized for their diversified dominance responsiveness and bioaccumulation potential toward pollutants in an ecosystem. Also, algal's incredible capability as biocatalysts in environmental appliances has been well elucidated owing to their robustness and simple nutritional demand. Additionally, microalgae can deliver various collections of bio-based chemical compounds helpful for diversified applications, especially as green alternatives.
View Article and Find Full Text PDFSynthetic dyes are toxic and their release into the environment harms the ecosystem. Phycoremediation of synthetic dyes with acclimatized and native species has advantages over other methods. In this study, textile effluent-acclimatized microalgae species of were grown in Bold's Basal Medium (BBM), dried, powdered using sonication, and optimized the removal malachite green (MG), using the response surface methodology (RSM).
View Article and Find Full Text PDF