J Phys Condens Matter
September 2021
Achieving directional exciton energy transport can revolutionize a plethora of applications that depend on exciton energy transfer. In this study, we theoretically analyse a system that comprises a collection of chiral quantum emitters placed in a plasmonic setup made up of a metal nanoparticle trimer. We investigate the system by pumping left and right circularly polarized photons to excite the system.
View Article and Find Full Text PDFWe investigate a system comprised of a constellation quantum emitters interacting with a localized surface plasmon mode of a metal nanoparticle subject to an externally applied electrostatic field. Due to the strong interactions among the electric field and the plasmonic setup, we show that system enters collective strong coupling regime generating polariton states when the intensity of the applied electrostatic field is increased. This in turn enhances the exciton energy transport rates between two emitters in the system when a single emitter is incoherently pumped.
View Article and Find Full Text PDF