Deterioration of groundwater quality is a long-term incident which leads unending vulnerability of groundwater. The present work was carried out in Murshidabad District, West Bengal, India to assess groundwater vulnerability due to elevated arsenic (As) and other heavy metal contamination in this area. The geographic distribution of arsenic and other heavy metals including physicochemical parameters of groundwater (in both pre-monsoon and post-monsoon season) and different physical factors were performed.
View Article and Find Full Text PDFThe fast-growing urbanization and slow progress in the field of waste management have led to the accumulation of large quantities of animal wastes. The present work focused on the synthesis of low-cost and eco-friendly chicken bile juice-mediated silver nanoparticles (BJ-AgNP). Results reveal that bile juices have enough potentiality towards the synthesis of almost uniform sizes (average size < 50 nm) of BJ-AgNPs which remains stable for more than 6 months.
View Article and Find Full Text PDFAccumulation of plastic materials in terrestrial systems threatens to contaminate food chains. The aim of the current study is to determine the impact of microplastics synthesized from PET plastics (control, 50, 250, 500, 750, 1000 mg/L) with respect to morphological, biochemical impact on Cicer arietinum using standardized 72 h assay and cytotoxicity study on Allium cepa root tips. The synthesized microplastics were characterized by Scanning Electron Microscope (SEM) and Fourier Transform Infrared spectroscopy (FTIR) studies.
View Article and Find Full Text PDFThe present study is focused on synthesis of silver nanoparticles from weeds and an assessment of their mosquito larvicidal efficacy. This study also presented the toxicological effects as well as the stability of these nanoparticles in aquatic mesocosms. The weed Digiteria sanguinallis was first time used for the synthesis of silver nanoparticles.
View Article and Find Full Text PDFThe present effort aims to investigate the cytotoxic and genotoxic impact of three widely used nanoparticles (ZnO, TiO and AlO) on root cells of Allium cepa as a test organism. The root tip of Allium cepa were treated with three different concentrations (0.1 10 and 100 mg/L) of the above-mentioned NPs and the observations were recorded after proper growth of root under both nanoparticle solutions and UV-B exposure in combined conditions and separately.
View Article and Find Full Text PDF