Publications by authors named "Kamalesh Jana"

The ability to manipulate the multiple properties of light diversifies light-matter interaction and light-driven applications. Here, using quantum control, we introduce an approach that enables the amplitude, sign, and even configuration of the generated light fields to be manipulated in an all-optical manner. Following this approach, we demonstrate the generation of "flying doughnut" terahertz (THz) pulses.

View Article and Find Full Text PDF

Structuring light-matter interaction at a deeply subwavelength scale is fundamental to optical metamaterials and metasurfaces. Conventionally, the operation of a metasurface is determined by the collective electric polarization response of its lithographically defined structures. The inseparability of electric polarization and current density provides the opportunity to construct metasurfaces from current elements instead of nanostructures.

View Article and Find Full Text PDF

We demonstrate the highest efficiency (∼80) second harmonic generation of joule level, 27 fs, high-contrast pulses in a type-I lithium triborate (LBO) crystal. In comparison, potassium dihydrogen phosphate gives a maximum efficiency of 26%. LBO thus offers high-intensity (>10/), ultra-high contrast femtosecond pulses, which have great potential for high energy density science and applications, particularly with nanostructured targets.

View Article and Find Full Text PDF

Optical Kerr gating technique has been employed to investigate the life history of relativistic electrons in solids by temporally gating their Cherenkov emission. Mega-ampere currents of relativistic electrons are created during ultra-intense (2 × 10 W/cm) laser-solid interactions. In order to measure the lifetime of these relativistic electrons in solids, we temporally gate their Cherenkov emission using an optical Kerr gate (OKG).

View Article and Find Full Text PDF

Remote manipulation (triggering and guiding) of lightning in atmospheric conditions of thunderstorms has been the subject of intense scientific research for decades. High power, ultrashort-pulse lasers are considered attractive in generating plasma channels in air that could serve as conductors/diverters for lightning. However, two fundamental obstacles, namely the limited length and lifetime of such plasma channels prevented their realization to this date.

View Article and Find Full Text PDF

We report the lifetime of intense-laser (2×10^{19}  W/cm^{2}) generated relativistic electron pulses in solids by measuring the time evolution of their Cherenkov emission. Using a picosecond resolution optical Kerr gating technique, we demonstrate that the electrons remain relativistic as long as 50 picoseconds-more than 1000 times longer than the incident light pulse. Numerical simulations of the propagation of relativistic electrons and the emitted Cherenkov radiation with Monte Carlo geant4 package reproduce the striking experimental findings.

View Article and Find Full Text PDF

Generation and application of energetic, broadband terahertz pulses (bandwidth ~0.1-50 THz) is an active and contemporary area of research. The main thrust is toward the development of efficient sources with minimum complexities-a true table-top setup.

View Article and Find Full Text PDF