Early canopy coverage is a desirable trait that is a major determinant of yield in soybean (Glycine max). Variation in traits comprising shoot architecture can influence canopy coverage, canopy light interception, canopy-level photosynthesis, and source-sink partitioning efficiency. However, little is known about the extent of phenotypic diversity of shoot architecture traits and their genetic control in soybean.
View Article and Find Full Text PDFThe β-ketoacyl-[acyl carrier protein] synthase 1 () gene has been shown in model plant systems to be critical for the conversion of sucrose to oil. A previous study characterized the morphological and seed composition phenotypes associated with a reciprocal chromosomal translocation that disrupted one of the genes in soybean. The principle findings of this work included a wrinkled seed phenotype, an increase in seed sucrose, a decrease in seed oil, and a low frequency of transmission of the translocation.
View Article and Find Full Text PDFPlastids comprise a complex set of organelles in plants that can undergo distinctive patterns of differentiation and redifferentiation during their lifespan. Plastids localized to the epidermis and vascular parenchyma are distinctive in size, structural features, and functions. These plastids are termed "sensory" plastids, and here we show their proteome to be distinct from chloroplasts, with specialized stress-associated features.
View Article and Find Full Text PDFMutagenesis is a useful tool in many crop species to induce heritable genetic variability for trait improvement and gene discovery. In this study, forward screening of a soybean fast neutron (FN) mutant population identified an individual that produced seed with nearly twice the amount of sucrose (8.1% on dry matter basis) and less than half the amount of oil (8.
View Article and Find Full Text PDFAs metabolic centers, plant organelles participate in maintenance, defense, and signaling. MSH1 is a plant-specific protein involved in organellar genome stability in mitochondria and plastids. Plastid depletion of MSH1 causes heritable, non-genetic changes in development and DNA methylation.
View Article and Find Full Text PDFPlant phenotypes respond to environmental change, an adaptive capacity that is at least partly transgenerational. However, epigenetic components of this interplay are difficult to measure. Depletion of the nuclear-encoded protein MSH1 causes dramatic and heritable changes in plant development, and here we show that crossing these altered plants with isogenic wild type produces epi-lines with heritable, enhanced growth vigour.
View Article and Find Full Text PDFMulticellular eukaryotes demonstrate nongenetic, heritable phenotypic versatility in their adaptation to environmental changes. This inclusive inheritance is composed of interacting epigenetic, maternal, and environmental factors. Yet-unidentified maternal effects can have a pronounced influence on plant phenotypic adaptation to changing environmental conditions.
View Article and Find Full Text PDFApoptosis and inhibition of host gene expression are often associated with virus infections. Many viral polypeptides modulate apoptosis by direct interaction with highly conserved apoptotic pathways. Some viruses induce apoptosis during late stages of the infection cycle, while others inhibit apoptosis to facilitate replication or maintain persistent infection.
View Article and Find Full Text PDFMitochondrial-plastid interdependence within the plant cell is presumed to be essential, but measurable demonstration of this intimate interaction is difficult. At the level of cellular metabolism, several biosynthetic pathways involve both mitochondrial- and plastid-localized steps. However, at an environmental response level, it is not clear how the two organelles intersect in programmed cellular responses.
View Article and Find Full Text PDF