The last few decades have led to the rise of research focused on propulsion and control systems for bio-inspired unmanned underwater vehicles (UUVs), which provide more maneuverable alternatives to traditional UUVs in underwater missions. Recent work has explored the use of time-series neural network surrogate models to predict thrust and power from vehicle design and fin kinematics. We expand upon this work, creating new forward neural network models that encapsulate the effects of the material stiffness of the fin on its kinematic performance, thrust, and power, and are able to interpolate to the full spectrum of kinematic gaits for each material.
View Article and Find Full Text PDF